920
Views
58
CrossRef citations to date
0
Altmetric
Review Article

Driving forces for drug loading in drug carriers

&
Pages 255-272 | Received 01 Jul 2014, Accepted 29 Dec 2014, Published online: 03 Mar 2015

References

  • Abraham SA, Edwards K, Karlsson G, Macintosh S, Mayer LD, Mckenzie C, Bally MB. Formation of transition metal–doxorubicin complexes inside liposomes. Biochim Biophys Acta, 2002;1565:41–54
  • Adams ML, Kwon GS. Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly (ethylene oxide)-block-poly(N-hexyl-l-aspartamide)-acyl conjugate micelles: Effects of acyl chain length. J Control Release, 2003;87:23–32
  • Alvarez-Núñez FA, Yalkowsky SH. Relationship between polysorbate 80 solubilization descriptors and octanol–water partition coefficients of drugs. Int J Pharm, 2000;200:217–22
  • Attia ABE, Ong ZY, Hedrick JL, Lee PP, Ee PLR, Hammond PT, Yang Y-Y. Mixed micelles self-assembled from block copolymers for drug delivery. Curr Opin Colloid Interface Sci, 2011;16:182–94
  • Baba M, Matsumoto Y, Kashio A, Cabral H, Nishiyama N, Kataoka K, Yamasoba T. Micellization of cisplatin (NC-6004) reduces its ototoxicity in guinea pigs. J Control Release, 2012;157:112–17
  • Balas F, Manzano M, Horcajada P, Vallet-Reg M. Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J Am Chem Soc, 2006;128:8116–17
  • Banner LT, Danila DC, Sharpe K, Durkin M, Clayton B, Anderson B, Richter A, Pinkhassik E. Controlled loading of building blocks into temporary self-assembled scaffolds for directed assembly of organic nanostructures. Langmuir, 2008;24:11464–73
  • Berti L, Woldeyesus T, Li Y, Lam KS. Maximization of loading and stability of ssDNA: Iron oxide nanoparticle complexes formed through electrostatic interaction. Langmuir, 2010;26:18293–9
  • Bickerton S, Jiwpanich S, Thayumanavan S. Interconnected roles of scaffold hydrophobicity, drug loading, and encapsulation stability in polymeric nanocarriers. Mol Pharm, 2012;9:3569–78
  • Bolotin EM, Cohen R, Bar LK, Emanuel N, Ninio S, Barenholz Y, Lasic DD. Ammonium sulfate gradients for efficient and stable remote loading of amphipathic weak bases into liposomes and ligandoliposomes. J Liposome Res, 1994;4:455–79
  • Boulikas T. Low toxicity and anticancer activity of a novel liposomal cisplatin (Lipoplatin) in mouse xenografts. Oncol Rep, 2004;12:3–12
  • Boulikas T. 2003. Therapy for human cancers using cisplatin and other drugs or genes encapsulated into liposomes. Google Patents
  • Brajtburg J, Powderly W, Kobayashi G, Medoff G. Amphotericin B: Delivery systems. Antimicrob Agents Chemother, 1990a;34:381–4
  • Brajtburg J, Powderly WG, Kobayashi GS, Medoff G. Amphotericin B: Current understanding of mechanisms of action. Antimicrob Agents Chemother, 1990b;34:183–8
  • Cai C, Bakowsky U, Rytting E, Schaper AK, Kissel T. Charged nanoparticles as protein delivery systems: A feasibility study using lysozyme as model protein. Eur J Pharm Biopharm, 2008;69:31–42
  • Cao T, Munk P, Ramireddy C, Tuzar Z, Webber S. Fluorescence studies of amphiphilic poly (methacrylic acid)-block-polystyrene-block-poly (methacrylic acid) micelles. Macromolecules, 1991;24:6300–5
  • Carstens MG, Bevernage JJ, van Nostrum CF, van Steenbergen MJ, Flesch FM, Verrijk R, de Leede LG, Crommelin DJ, Hennink WE. Small oligomeric micelles based on end group modified mPEG-oligocaprolactone with monodisperse hydrophobic blocks. Macromolecules, 2007;40:116–22
  • Carstens MG, de Jong PH, van Nostrum CF, Kemmink J, Verrijk R, de Leede LG, Crommelin DJ, Hennink WE. The effect of core composition in biodegradable oligomeric micelles as taxane formulations. Eur J Pharma Biopharm, 2008;68:596–606
  • Castro E, Taboada P, Mosquera V. An isothermal titration calorimetry study of the interactions between an oxyphenylethylene/oxyethylene diblock copolymer and sodium dodecyl sulfate. Mol Phys, 2005;103:579–85
  • Cha E-J, Kim JE, Ahn C-H. Stabilized polymeric micelles by electrostatic interactions for drug delivery system. Eur J Pharm Sci, 2009;38:341–6
  • Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol, 2002;13:40–6
  • Chang B, Guo J, Liu C, Qian J, Yang W. Surface functionalization of magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem, 2010;20:9941–7
  • Chang L, Deng L, Wang W, Lv Z, Hu F, Dong A, Zhang J. Poly(ethyleneglycol)-b-poly(epsilon-caprolactone-co-gamma-hydroxyl-epsil on-caprolactone) bearing pendant hydroxyl groups as nanocarriers for doxorubicin delivery. Biomacromolecules, 2012;13:3301–10
  • Chen L, Qin Y, Wang X, Zhao X, Wang F. Plasticizing while toughening and reinforcing poly(propylene carbonate) using low molecular weight urethane: Role of hydrogen-bonding interaction. Polymer, 2011a;52:4873–80
  • Chen Y, Chen H, Zeng D, Tian Y, Chen F, Feng J, Shi J. Core/shell structured hollow mesoporous nanocapsules: A potential platform for simultaneous cell imaging and anticancer drug delivery. Acs Nano, 2010;4:6001–13
  • Chen Z, Pierre D, He H, Tan S, Chuong P-H, Hong H, Huang J. Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes. Int J Pharm, 2011b;405:153–61
  • Cheng H, Li Y-Y, Zeng X, Sun Y-X, Zhang X-Z, Zhuo R-X. Protamine sulfate/poly(L-aspartic acid) polyionic complexes self-assembled via electrostatic attractions for combined delivery of drug and gene. Biomaterials, 2009;30:1246–53
  • Cheng Y, Cai H, Yin B, Yao P. Cholic acid modified N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride for superoxide dismutase delivery. Int J Pharm, 2013;454:425–34
  • Cheng Z, Ma P, Hou Z, Wang W, Dai Y, Zhai X, Lin J. YVO4:Eu3 + functionalized porous silica submicrospheres as delivery carriers of doxorubicin. Dalton Trans, 2012;41:1481–9
  • Christian SD, Scamehorn JF. 1995. Solubilization in surfactant aggregates. New York: CRC Press
  • Clare H, Lin PKT, Tetley L, Cheng WP. The use of nano polymeric self-assemblies based on novel amphiphilic polymers for oral hydrophobic drug delivery. Pharm Res, 2012;29:782–94
  • Davila-Ibanez AB, Salgueirino V, Martinez-Zorzano V, Marino-Fernandez R, Garcia-Lorenzo A, Maceira-Campos M, Munoz-Ubeda M, Junquera E, Aicart E, Rivas J, et al. Magnetic silica nanoparticle cellular uptake and cytotoxicity regulated by electrostatic polyelectrolytes-DNA loading at their surface. Acs Nano, 2012;6:747–59
  • Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled ring-opening polymerization of lactide and glycolide. Chem Rev, 2004;104:6147–76
  • Devarajan P, Tarabishi R, Mishra J, Ma Q, Kourvetaris A, Vougiouka M, Boulikas T. Low renal toxicity of lipoplatin compared to cisplatin in animals. Anticancer Res, 2004;24:2193–200
  • Ding C, Xu S, Lin J, Hu X, Jian W, Wang J, Ma J, Feng S. Controlled loading and release of methylene blue for hydrogen-bonded LbL poly(vinyl pyrrolidone)/poly (acrylic acid) film. J Polym Res, 2012;19:9817
  • Dong H, Zhao Z, Wen H, Li Y, Guo F, Shen A, Frank P, Lin C, Shi D. Poly(ethylene glycol) conjugated nano-graphene oxide for photodynamic therapy. Sci China Chem, 2010;53:2265–71
  • Dutta P, Dey J, Perumal V, Mandal M. Amino acid based amphiphilic copolymer micelles as carriers of non-steroidal anti-inflammatory drugs: Solubilization, in vitro release and biological evaluation. Int J Pharm, 2011;407:207–16
  • Duweltz D, Laupretre F, Abed S, Bouteiller L, Boileau S. Supramolecular association of acid-terminated polydimethylsiloxanes. IV. NMR investigation of hydrogen bonding interactions and apparent molecular weight in the bulk state. Polymer, 2003;44:2295–302
  • Ebrahim Attia AB, Yang C, Tan JP, Gao S, Williams DF, Hedrick JL, Yang Y-Y. The effect of kinetic stability on biodistribution and anti-tumor efficacy of drug-loaded biodegradable polymeric micelles. Biomaterials, 2013;34:3132–40
  • Falamarzian A, Lavasanifar A. Optimization of the hydrophobic domain in poly(ethylene oxide)-poly(varepsilon-caprolactone) based nano-carriers for the solubilization and delivery of Amphotericin B. Colloids Surf B, 2010;81:313–20
  • Fang N, Chan V, Mao HQ, Leong KW. Interactions of phospholipid bilayer with chitosan: Effect of molecular weight and pH. Biomacromolecules, 2001;2:1161–8
  • Florence AT, Attwood D, Attwood D. 2011. Physicochemical principles of pharmacy. London, UK: Pharmaceutical Press
  • Forrest ML, Zhao A, Won C-Y, Malick AW, Kwon GS. Lipophilic prodrugs of Hsp90 inhibitor geldanamycin for nanoencapsulation in poly (ethylene glycol)-b-poly (epsilon-caprolactone) micelles. J Control Release, 2006;116:139–49
  • Fritze A, Hens F, Kimpfler A, Schubert R, Peschka-Suess R. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta, 2006;1758:1633–40
  • Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier – Systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B, 2007;59:24–34
  • Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer, 2001;37:1590–8
  • Geng Y, Discher DE. Visualization of degradable worm micelle breakdown in relation to drug release. Polymer, 2006;47:2519–25
  • Giacomelli C, Schmidt V, Borsali R. Specific interactions improve the loading capacity of block copolymer micelles in aqueous media. Langmuir, 2007;23:6947–55
  • Gong YJ, Gao MY, Wang DY, Mohwald H. Incorporating fluorescent CdTe nanocrystals into a hydrogel via hydrogen bonding: Toward fluorescent microspheres with temperature-responsive properties. Chem Mater, 2005;17:2648–53
  • Gou M, Zheng X, Men K, Zhang J, Wang B, Lv L, Wang X, Zhao Y, Luo F, Chen L, et al. Self-assembled hydrophobic honokiol loaded MPEG-PCL diblock copolymer micelles. Pharm Res, 2009;26:2164–73
  • Grant J, Lee H, Soo PL, Cho J, Piquette-Miller M, Allen C. Influence of molecular organization and interactions on drug release for an injectable polymer-lipid blend. Int J Pharm, 2008;360:83–90
  • Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsini IK, Aggarwal BB. Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep, 2011;28:1937–55
  • Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I, Nakatomi I, Yokoyama M, Kataoka K, Kakizoe T. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer, 2005;92:1240–6
  • Hao J, Cheng Y, Ranatunga RJKU, Senevirathne S, Biewer MC, Nielsen SO, Wang Q, Stefan MC. A combined experimental and computational study of the substituent effect on micellar behavior of gamma-substituted thermoresponsive amphiphilic poly(epsilon-caprolactone)s. Macromolecules, 2013;46:4829–38
  • Hao Y-M, Li KA. Entrapment and release difference resulting from hydrogen bonding interactions in niosome. Int J Pharm, 2011;403:245–53
  • Harada A, Kataoka K. Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly (ethylene glycol) segments. Macromolecules, 1995;28:5294–9
  • Harada A, Kataoka K. Novel polyion complex micelles entrapping enzyme molecules in the core: Preparation of narrowly-distributed micelles from lysozyme and poly (ethylene glycol)-poly (aspartic acid) block copolymer in aqueous medium. Macromolecules, 1998;31:288–94
  • Harada A, Kataoka K. Pronounced activity of enzymes through the incorporation into the core of polyion complex micelles made from charged block copolymers. J Control Release, 2001;72:85–91
  • Haran G, Cohen R, Bar LK, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta, 1993;1151:201–15
  • Harrington K, Lewanski C, Northcote A, Whittaker J, Wellbank H, Vile R, Peters A, Stewart J. Phase I-II study of pegylated liposomal cisplatin (SPI-077 TM) in patients with inoperable head and neck cancer. Ann Oncol, 2001;12:493–6
  • Hassanzadeh S, Khoee S, Firoozpour L. Effect of the copolymerized aromatic and unsaturated monomers on the affinity of drug-polyesters in the core-shell nanoparticles. Macromol Res, 2013;21:55–64
  • Heald C, Stolnik S, Kujawinski K, de Matteis C, Garnett M, Illum L, Davis S, Purkiss S, Barlow R, Gellert P. Poly (lactic acid)-poly (ethylene oxide)(PLA-PEG) nanoparticles: NMR studies of the central solidlike PLA core and the liquid PEG corona. Langmuir, 2002;18:3669–75
  • Hiemenz JW, Walsh TJ. Lipid formulations of amphotericin B: Recent progress and future directions. Clin Infect Dis, 1996;22(Suppl 2):S133–44
  • Hofman J-W, Carstens MG, van Zeeland F, Helwig C, Flesch FM, Hennink WE, van Nostrum CF. Photocytotoxicity of mTHPC (Temoporfin) loaded polymeric micelles mediated by lipase catalyzed degradation. Pharmaceut Res, 2008;25:2065–73
  • Hosseinkhani H, Kushibiki T, Matsumoto K, Nakamura T, Tabata Y. Enhanced suppression of tumor growth using a combination of NK4 plasmid DNA-PEG engrafted cationized dextran complex and ultrasound irradiation. Cancer Gene Ther, 2006;13:479–89
  • Hsu C-H, Kuo S-W, Chen J-K, Ko F-H, Liao C-S, Chang F-C. Self-assembly behavior of AB diblock and CD random copolymer mixtures in the solution state through mediated hydrogen bonding. Langmuir, 2008;24:7727–34
  • Huang Y, Wei Z. Self-assembly of chiral amphiphiles with pi-conjugated tectons. Chin Sci Bull, 2012;57:4246–56
  • Huh KM, Lee SC, Cho YW, Lee JW, Jeong JH, Park K. Hydrotropic polymer micelle system for delivery of paclitaxel. J Control Release, 2005;101:59–68
  • Ikada Y, Jamshidi K, Tsuji H, Hyon SH. Stereocomplex formation between enantiomeric poly (lactides). Macromolecules, 1987;20:904–6
  • Israelachvili JN. 2011. Intermolecular and surface forces. Revised 3rd edn. New York: Academic Press
  • Jiang G-B, Quan D, Liao K, Wang H. Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Mol Pharm, 2006;3:152–60
  • Jin R, Ji X, Yang Y, Wang H, Cao A. Self-assembled graphene-dextran nanohybrid for killing drug-resistant cancer cells. ACS Appl Mater Interfaces, 2013;5:7181–9
  • Jones M-C, Leroux J-C. Polymeric micelles – A new generation of colloidal drug carriers. Eur J Pharm Biopharm, 1999;48:101–11
  • Kang N, Perron M-È, Prud'homme RE, Zhang Y, Gaucher G, Leroux J-C. Stereocomplex block copolymer micelles: Core-shell nanostructures with enhanced stability. Nano Lett, 2005;5:315–19
  • Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S, Okamoto K, Kwon GS. Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) copolymer micelles: Their pharmaceutical characteristics and biological significance. J Control Release, 2000;64:143–53
  • Katayose S, Kataoka K. Water-soluble polyion complex associates of DNA and poly (ethylene glycol)-poly (L-lysine) block copolymer. Bioconjug Chem, 1997;8:702–7
  • Katayose S, Kataoka K. Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly (ethylene glycol)—poly (L-lysine) block copolymer. J Pharm Sci, 1998;87:160–3
  • Kavitha T, Abdi SIH, Park S-Y. pH-sensitive nanocargo based on smart polymer functionalized graphene oxide for site-specific drug delivery. Phys Chem Chem Phys, 2013;15:5176–85
  • Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine, 2010;6:714–29
  • Kepczynski M, Nawalany K, Kumorek M, Kobierska A, Jachimska B, Nowakowska M. Which physical and structural factors of liposome carriers control their drug-loading efficiency? Chem Phys Lipids, 2008;155:7–15
  • Khan SN, Islam B, Yennamalli R, Sultan A, Subbarao N, Khan AU. Interaction of mitoxantrone with human serum albumin: Spectroscopic and molecular modeling studies. Eur J Pharm Sci, 2008;35:371–82
  • Kharlampieva E, Sukhishvili SA. Polyelectrolyte multilayers of weak polyacid and cationic copolymer: Competition of hydrogen-bonding and electrostatic interactions. Macromolecules, 2003;36:9950–6
  • Kharlampieva E, Sukhishvili SA. Release of a dye from hydrogen-bonded and electrostatically assembled polymer films triggered by adsorption of a polyelectrolyte. Langmuir, 2004;20:9677–85
  • Khoee S, Hassanzadeh S, Goliaie B. Effects of hydrophobic drug–polyesteric core interactions on drug loading and release properties of poly (ethylene glycol)–polyester–poly (ethylene glycol) triblock core–shell nanoparticles. Nanotechnology, 2007;18:175602
  • Kim B-S, Park SW, Hammond PT. Hydrogen-bonding layer-by-layer assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces. ACS Nano, 2008;2:386–92
  • Kim H, Lee D, Kim J, Kim T-I, Kim WJ. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano, 2013;7:6735–46
  • Kim JY, Kim S, Papp M, Park K, Pinal R. Hydrotropic solubilization of poorly water-soluble drugs. J Pharm Sci, 2010a;99:3953–65
  • Kim JY, Kim S, Pinal R, Park K. Hydrotropic polymer micelles as versatile vehicles for delivery of poorly water-soluble drugs. J Control Release, 2011;152:13–20
  • Kim KH, Jo WH. Optimization of molecular structure of polythiophene-graft-PMMA for effective compatibilization of SAN/MWCNT composite with superior mechanical properties. Fibers Polym, 2008;9:544–50
  • Kim SD, Chakravarti S, Tian J, Bell P. The phase behavior and the Flory-Huggins interaction parameter of blends containing amorphous poly(resorcinol phthalate-block-carbonate), poly(bisphenol-A carbonate) and poly(ethylene terephthalate). Polymer, 2010b;51:2199–206
  • Kim SH, Tan JPK, Nederberg F, Fukushima K, Colson J, Yang C, Nelson A, Yang Y-Y, Hedrick JL. Hydrogen bonding-enhanced micelle assemblies for drug delivery. Biomaterials, 2010c;31:8063–71
  • Kipper MJ, Seifert S, Thiyagarajan P, Narasimhan B. Understanding polyanhydride blend phase behavior using scattering, microscopy, and molecular simulations. Polymer, 2004;45:3329–40
  • Krevelen DW, Van Krevelen D. 1990. Properties of polymers: Their correlation with chemical structure, their numerical estimation and prediction from additive group contributions. Amsterdam, Netherlands: Elsevier Amsterdam
  • Kuang H, Wu S, Meng F, Xie Z, Jing X, Huang Y. Core-crosslinked amphiphilic biodegradable copolymer based on the complementary multiple hydrogen bonds of nucleobases: Synthesis, self-assembly and in vitro drug delivery. J Mater Chem, 2012;22:24832–40
  • Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Block copolymer micelles for drug delivery: Loading and release of doxorubicin. J Control Release, 1997;48:195–201
  • Kwon GS, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Physical entrapment of adriamycin in AB block copolymer micelles. Pharm Res, 1995;12:192–5
  • Lai TC, Kataoka K, Kwon GS. Pluronic-based cationic block copolymer for forming pDNA polyplexes with enhanced cellular uptake and improved transfection efficiency. Biomaterials, 2011;32:4594–603
  • Lai Y, Lei Y, Xu X, Li Y, He B, Gu Z. Polymeric micelles with pi-pi conjugated cinnamic acid as lipophilic moieties for doxorubicin delivery. J Mater Chem B, 2013;1:4289–96
  • Lavasanifar A, Samuel J, Kwon GS. The effect of fatty acid substitution on the in vitro release of amphotericin B from micelles composed of poly (ethylene oxide)-block-poly (N-hexyl stearate-l-aspartamide). J Control Release, 2002a;79:165–72
  • Lavasanifar A, Samuel J, Kwon GS. Poly (ethylene oxide)-block-poly (l-amino acid) micelles for drug delivery. Adv Drug Deliv Rev, 2002b;54:169–90
  • Lee ALZ, Venkataraman S, Sirat SBM, Gao S, Hedrick JL, Yang YY. The use of cholesterol-containing biodegradable block copolymers to exploit hydrophobic interactions for the delivery of anticancer drugs. Biomaterials, 2012;33:1921–8
  • Lee EC, Kim D, JurečKA P, Tarakeshwar P, Hobza P, Kim KS. Understanding of assembly phenomena by aromatic-aromatic interactions: Benzene dimer and the substituted systems. J Phys Chem A, 2007a;111:3446–57
  • Lee J, Cho EC, Cho K. Incorporation and release behavior of hydrophobic drug in functionalized poly (D, L-lactide)-block–poly (ethylene oxide) micelles. J Control Release, 2004a;94:323–35
  • Lee JY, Cho EC, Cho K. Incorporation and release behavior of hydrophobic drug in functionalized poly(D,L-lactide)-block-poly(ethylene oxide) micelles. J Control Release, 2004b;94:323–35
  • Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim S-B, Rha SY, Lee MY, Ro J. Multicenter phase II trial of Genexol-PM, a cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat, 2008;108:241–50
  • Lee S-W, Chang D-H, Shim M-S, Kim B-O, Kim S-O, Seo M-H. Ionically fixed polymeric nanoparticles as a novel drug carrier. Pharm Res, 2007b;24:1508–16
  • Lee SC, Huh KM, Lee J, Cho YW, Galinsky RE, Park K. Hydrotropic polymeric micelles for enhanced paclitaxel solubility: In vitro and in vivo characterization. Biomacromolecules, 2007c;8:202–8
  • Lefèvre N, Fustin C-A, Gohy J-F. Reorganization of hydrogen-bonded block copolymer complexes. Langmuir, 2007;23:4618–22
  • Li C, Wallace S. Polymer-drug conjugates: Recent development in clinical oncology. Adv Drug Deliv Rev, 2008;60:886–98
  • Li X, Cabral-Lilly D, Janoff A, Perkins W. Complexation of internalized doxorubicin into fiber bundles affects its release rate from liposomes. J Liposome Res, 2000;10:15–27
  • Li Y, Wong HL, Shuhendler AJ, Rauth AM, Wu MY. Molecular interactions, internal structure and drug release kinetics of rationally developed polymer-lipid hybrid nanoparticles. J Control Release, 2008;128:60–70
  • Liu J, Zeng F, Allen C. In vivo fate of unimers and micelles of a poly (ethylene glycol)-block-poly (caprolactone) copolymer in mice following intravenous administration. Eur J Pharm Biopharm, 2007;65:309–19
  • Liu K-H, Chen B-R, Chen S-Y, Liu D-M. Self-assembly behavior and doxorubicin-loading capacity of acylated carboxymethyl chitosans. J Phys Chem B, 2009;113:11800–7
  • Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev, 2008;60:1650–62
  • Lobmann K, Laitinen R, Strachan C, Rades T, Grohganz H. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs – Part 2: Molecular interactions. Eur J Pharm Biopharm, 2013;85:882–8
  • Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev, 2004;56:1273–89
  • Luxenhofer R, Schulz A, Roques C, Li S, Bronich TK, Batrakova EV, Jordan R, Kabanov AV. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials, 2010;31:4972–9
  • Ma J-H, Guo C, Tang Y-L, Zhang H, Liu H-Z. Probing paeonol-pluronic polymer interactions by H-1 NMR spectroscopy. J Phys Chem B, 2007;111:13371–8
  • Ma Y, Gao H, Gu W, Yang Y-W, Wang Y, Fan Y, Wu G, Ma J. Carboxylated poly(glycerol methacrylate)s for doxorubicin delivery. Eur J Pharm Sci, 2012;45:65–72
  • Mahmud A, Patel S, Molavi O, Choi P, Samuel J, Lavasanifar A. Self-associating poly(ethylene oxide)-b-poly(alpha-cholesteryl carboxylate-epsilon-caprolactone) block copolymer for the solubilization of STAT-3 inhibitor cucurbitacin I. Biomacromolecules, 2009;10:471–8
  • Mansour HM, Hickey AJ. Raman characterization and chemical imaging of biocolloidal self-assemblies, drug delivery systems, and pulmonary inhalation aerosols: A review. AAPS Pharm Sci Tech, 2007;8:E99
  • Marsac PJ, Shamblin SL, Taylor LS. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res, 2006;23:2417–26
  • Mikhail AS, Allen C. Poly (ethylene glycol)-b-poly (ε-caprolactone) micelles containing chemically conjugated and physically entrapped docetaxel: Synthesis, characterization, and the influence of the drug on micelle morphology. Biomacromolecules, 2010;11:1273–80
  • Mizumura Y, Matsumura Y, Hamaguchi T, Nishiyama N, Kataoka K, Kawaguchi T, Hrushesky WJ, Moriyasu F, Kakizoe T. Cisplatin-incorporated polymeric micelles eliminate nephrotoxicity, while maintaining antitumor activity. Cancer Sci, 2001;92:328–36
  • Momot KI, Kuchel PW. Pulsed field gradient nuclear magnetic resonance as a tool for studying drug delivery systems. Concepts Magn Reson Part A, 2003;19:51–64
  • Motornov M, Roiter Y, Tokarev I, Minko S. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci, 2010;35:174–211
  • Mullard A. 2012 FDA drug approvals. Nat Rev Drug Discov, 2013;12:87–90
  • Myers D. 1999. Surfaces, interfaces, and colloids. New York: Wiley-VCH
  • Neelakandan C, Kyu T. Effects of genistein modification on miscibility and hydrogen bonding interactions in poly (amide)/poly (vinyl pyrrolidone) blends and membrane morphology development during coagulation. Polymer, 2010;51:5135–44
  • Nishiyama N, Okazaki S, Cabral H, Miyamoto M, Kato Y, Sugiyama Y, Nishio K, Matsumura Y, Kataoka K. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res, 2003;63:8977–83
  • Nishiyama N, Yokoyama M, Aoyagi T, Okano T, Sakurai Y, Kataoka K. Preparation and characterization of self-assembled polymer-metal complex micelle from cis-dichlorodiammineplatinum (II) and poly (ethylene glycol)-poly (α, β-aspartic acid) block copolymer in an aqueous medium. Langmuir, 1999;15:377–83
  • Oberoi HS, Nukolova NV, Kabanov AV, Bronich TK. Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev, 2013;65:1667–85
  • Orienti I, Zuccari G, Fini A, Rabasco AM, Montaldo P, Raffaghello L, Carosio R. Modified doxorubicin for improved encapsulation in PVA polymeric micelles. Drug Deliv, 2005;12:15–20
  • Owen SC, Chan DP, Shoichet MS. Polymeric micelle stability. Nano Today, 2012;7:53–65
  • Painter P, Veytsman B, Kumar S, Shenoy S, Graf J, Xu Y, Coleman M. Intramolecular screening effects in polymer mixtures. 1. Hydrogen-bonded polymer blends. Macromolecules, 1997;30:932–42
  • Pan Y-J, Chen Y-Y, Wang D-R, Wei C, Guo J, Lu D-R, Chu C-C, Wang C-C. Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials, 2012;33:6570–9
  • Park W, Kim D, Kang HC, Bae YH, Na K. Multi-arm histidine copolymer for controlled release of insulin from poly(lactide-co-glycolide) microsphere. Biomaterials, 2012;33:8848–57
  • Patel S, Lavasanifar A, Choi P. Application of molecular dynamics simulation to predict the compatability between water-insoluble drugs and self-associating poly(ethylene oxide)-b-poly(epsilon-caprolactone) block copolymers. Biomacromolecules, 2008;9:3014–23
  • Patel SK, Lavasanifar A, Choi P. Roles of nonpolar and polar intermolecular interactions in the improvement of the drug loading capacity of PEO-b-PCL with Increasing PCL content for two hydrophobic cucurbitacin drugs. Biomacromolecules, 2009;10:2584–91
  • Patel SK, Lavasanifar A, Choi P. Molecular dynamics study of the encapsulation capability of a PCL-PEO based block copolymer for hydrophobic drugs with different spatial distributions of hydrogen bond donors and acceptors. Biomaterials, 2010a;31:1780–6
  • Patel SK, Lavasanifar A, Choi P. Prediction of the solubility of cucurbitacin drugs in self-associating poly(ethylene oxide)-b-poly(alpha-benzyl carboxylate epsilon-caprolactone) block copolymer with different tacticities using molecular dynamics simulation. Biomaterials, 2010b;31:345–57
  • Plummer R, Wilson R, Calvert H, Boddy A, Griffin M, Sludden J, Tilby M, Eatock M, Pearson D, Ottley C. A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer, 2011;104:593–8
  • Rekha MR, Sharma CP. Blood compatibility and in vitro transfection studies on cationically modified pullulan for liver cell targeted gene delivery. Biomaterials, 2009;30:6655–64
  • Richter A, Olbrich C, Krause M, Hoffmann J, Kissel T. Polymeric micelles for parenteral delivery of sagopilone: Physicochemical characterization, novel formulation approaches and their toxicity assessment in vitro as well as in vivo. Eur J Pharm Biopharm, 2010;75:80–9
  • Sahu A, Bora U, Kasoju N, Goswami P. Synthesis of novel biodegradable and self-assembling methoxy poly (ethylene glycol)–palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomaterialia, 2008;4:1752–61
  • Sant VP, Smith D, Leroux J-C. Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: Preparation and characterization. J Control Release, 2004;97:301–12
  • Sarasua J-R, Rodr Guez NL, Arraiza AL, Meaurio E. Stereoselective crystallization and specific interactions in polylactides. Macromolecules, 2005;38:8362–71
  • Seo MH, Lee S-W, Hyun M-H, Yu J-I, Chang D-H, Yoon H-J, Kim J-K. 2013. Amphiphilic block copolymer and polymeric composition comprising the same for drug delivery. Google Patents
  • Serajuddin A. Salt formation to improve drug solubility. Adv Drug Deliv Rev, 2007;59:603–16
  • Shaffer SA, Baker-Lee C, Kennedy J, Lai MS, de Vries P, Buhler K, Singer JW. In vitro and in vivo metabolism of paclitaxel poliglumex: Identification of metabolites and active proteases. Cancer Chemother Pharmacol, 2007;59:537–48
  • Shen SI, Kotamraj PR, Bhattacharya S, Li X, Jasti BR. Synthesis and characterization of RGD-fatty acid amphiphilic micelles as targeted delivery carriers for anticancer agents. J Drug Target, 2007;15:51–8
  • Shi Y, van Steenbergen MJ, Teunissen EA, Novo L, Gradmann S, Baldus M, van Nostrum CF, Hennink WE. Pi-Pi stacking increases the stability and loading capacity of thermosensitive polymeric micelles for chemotherapeutic drugs. Biomacromolecules, 2013;14:1826–37
  • Shuai X, Ai H, Nasongkla N, Kim S, Gao J. Micellar carriers based on block copolymers of poly (ε-caprolactone) and poly (ethylene glycol) for doxorubicin delivery. J Control Release, 2004;98:415–26
  • Siemoneit U, Schmitt C, Alvarez-Lorenzo C, Luzardo A, Otero-Espinar F, Concheiro A, Blanco-Mendez J. Acrylic/cyclodextrin hydrogels with enhanced drug loading and sustained release capability. Int J Pharm, 2006;312:66–74
  • Singer JW. Paclitaxel poliglumex (XYOTAX™, CT-2103): A macromolecular taxane. J Control Release, 2005;109:120–6
  • Sinnokrot MO, Valeev EF, Sherrill CD. Estimates of the ab initio limit for pi-pi interactions: The benzene dimer. J Am Chem Soc, 2002;124:10887–93
  • Song SW, Hidajat K, Kawi S. Functionalized SBA-15 materials as carriers for controlled drug delivery: Influence of surface properties on matrix-drug interactions. Langmuir, 2005;21:9568–75
  • Stathopoulos G, Boulikas T. Lipoplatin formulation review article. J Drug Deliv, 2012;2012:581363
  • Stone A. 2013. The theory of intermolecular forces. Oxford: Oxford University Press
  • Such GK, Johnston APR, Caruso F. Engineered hydrogen-bonded polymer multilayers: From assembly to biomedical applications. Chem Soc Rev, 2011;40:19–29
  • Suksiriworapong J, Sripha K, Kreuter J, Junyaprasert VB. Investigation of polymer and nanoparticle properties with nicotinic acid and p-aminobenzoic acid grafted on poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) via click chemistry. Bioconjug Chem, 2011;22:582–94
  • Suksiriworapong J, Sripha K, Kreuter J, Junyaprasert VB. Functionalized (poly(epsilon-caprolactone))(2)-poly(ethylene glycol) nanoparticles with grafting nicotinic acid as drug carriers. Int J Pharm, 2012;423:562–70
  • Sun Y, Yan X, Yuan T, Liang J, Fan Y, Gu Z, Zhang X. Disassemblable micelles based on reduction-degradable amphiphilic graft copolymers for intracellular delivery of doxorubicin. Biomaterials, 2010;31:7124–31
  • Sun Y, Zou W, Bian S, Huang Y, Tan Y, Liang J, Fan Y, Zhang X. Bioreducible PAA-g-PEG graft micelles with high doxorubicin loading for targeted antitumor effect against mouse breast carcinoma. Biomaterials, 2013;34:6818–28
  • Tang Q, Xu Y, Wu D, Sun Y. A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine. J Solid State Chem, 2006;179:1513–20
  • Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res 1997;14:1691–8
  • Thomas AM, Kapanen AI, Hare JI, Ramsay E, Edwards K, Karlsson G, Bally MB. Development of a liposomal nanoparticle formulation of 5-Fluorouracil for parenteral administration: Formulation design, pharmacokinetics and efficacy. J Control Release, 2011;150:212–19
  • Tian B, Wang C, Zhang S, Feng L, Liu Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. Acs Nano, 2011;5:7000–9
  • Tian Y, Bromberg L, Lin SN, Hatton TA, Tam KC. Complexation and release of doxorubicin from its complexes with pluronic P85-b-poly(acrylic acid) block copolymers. J Control Release, 2007;121:137–45
  • Torchilin VP. Micellar nanocarriers: Pharmaceutical perspectives. Pharm Res, 2007;24:1–16
  • Uchino H, Matsumura Y, Negishi T, Koizumi F, Hayashi T, Honda T, Nishiyama N, Kataoka K, Naito S, Kakizoe T. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer, 2005;93:678–87
  • Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed Engl, 2007;46:7548–58
  • Vallet-Regi M, Ramila A, Del Real R, P Rez-Pariente J. A new property of MCM-41: Drug delivery system. Chem Mater, 2001;13:308–11
  • Vassiliou AA, Papadimitriou SA, Bikiaris DN, Mattheolabakis G, Avgoustakis K. Facile synthesis of polyester-PEG triblock copolymers and preparation of amphiphilic nanoparticles as drug carriers. J Control Release, 2010;148:388–95
  • Velluto D, Demurtas D, Hubbell JA. PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release: Cyclosporin A as an example. Mol Pharm, 2008;5:632–42
  • Volodkin DV, Larionova NI, Sukhorukov GB. Protein encapsulation via porous CaCO3 microparticles templating. Biomacromolecules, 2004;5:1962–72
  • Wan D, Wang G, Pu H, Jin M. Can nonspecific host-guest interaction lead to highly specific encapsulation by a supramolecular nanocapsule? Macromolecules, 2009;42:6448–56
  • Wang D, Su Y, Jin C, Zhu B, Pang Y, Zhu L, Liu J, Tu C, Yan D, Zhu X. Supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases for drug delivery. Biomacromolecules, 2011;12:1370–9
  • Wang X-Y, Zhang L, Wei X-H, Wang Q. Molecular dynamics of paclitaxel encapsulated by salicylic acid-grafted chitosan oligosaccharide aggregates. Biomaterials, 2013a;34:1843–51
  • Wang Y, Yu L, Han L, Sha X, Fang X. Difunctional Pluronic copolymer micelles for paclitaxel delivery: Synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines. Int J Pharm, 2007;337:63–73
  • Wang Y, Zhou J, Tang Y, Wei Y, Gong H, Li X, Zhang J. Nanocomplexation-assisted solubilization of pDNA in organic solvents for improved microencapsulation. J Colloid Interface Sci, 2013b;394:573–81
  • Xiong Y, Qi J, Yao P. Amphiphilic cholic-acid-modified dextran sulfate and its application for the controlled delivery of superoxide dismutase. Macromol Biosci, 2012;12:515–24
  • Yamamoto Y, Yasugi K, Harada A, Nagasaki Y, Kataoka K. Temperature-related change in the properties relevant to drug delivery of poly (ethylene glycol)–poly (d,l-lactide) block copolymer micelles in aqueous milieu. J Control Release, 2002;82:359–71
  • Yan J, Ye Z, Chen M, Liu Z, Xiao Y, Zhang Y, Zhou Y, Tan W, Lang M. Fine tuning micellar core-forming block of poly (ethylene glycol)-block-poly (ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin. Biomacromolecules, 2011;12:2562–72
  • Yan W, Huang L. The effects of salt on the physicochemical properties and immunogenicity of protein based vaccine formulated in cationic liposome. Int J Pharm, 2009;368:56–62
  • Yang C, Ebrahim Attia AB, Tan JP, Ke X, Gao S, Hedrick JL, Yang Y-Y. The role of non-covalent interactions in anticancer drug loading and kinetic stability of polymeric micelles. Biomaterials, 2012;33:2971–9
  • Yang C, Tan JPK, Cheng W, Attia ABE, Ting CTY, Nelson A, Hedrick JL, Yang Y-Y. Supramolecular nanostructures designed for high cargo loading capacity and kinetic stability. Nano Today, 2010;5:515–23
  • Yang L, Wu X, Liu F, Duan Y, Li S. Novel biodegradable polylactide/poly(ethylene glycol) micelles prepared by direct dissolution method for controlled delivery of anticancer drugs. Pharm Res, 2009;26:2332–42
  • Yang M, Wang P, Gogos C. Prediction of acetaminophen's solubility in poly(ethylene oxide) at room temperature using the Flory-Huggins theory. Drug Dev Ind Pharm, 2013;39:102–8
  • Yang SR, Lee HJ, Kim J-D. Histidine-conjugated poly(amino acid) derivatives for the novel endosomolytic delivery carrier of doxorubicin. J Control Release, 2006;114:60–8
  • Yokoyama M, Fukushima S, Uehara R, Okamoto K, Sakurai Y, Okano T. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J Control Release, 1998;50:79–92
  • Yuan X, Harada A, Yamasaki Y, Kataoka K. Stabilization of lysozyme-incorporated polyion complex micelles by the ω-end derivatization of poly (ethylene glycol)-poly (α, β-aspartic acid) block copolymers with hydrophobic groups. Langmuir, 2005;21:2668–74
  • Zhang Q, Li W, Kong T, Su R, Li N, Song Q, Tang M, Liu L, Cheng G. Tailoring the interlayer interaction between doxorubicin-loaded graphene oxide nanosheets by controlling the drug content. Carbon, 2013;51:164–72
  • Zhao Y, Bertrand J, Tong X, Zhao Y. Photo-cross-linkable polymer micelles in hydrogen-bonding-built layer-by-layer films. Langmuir, 2009a;25:13151–7
  • Zhao Y, Tanaka M, Kinoshita T, Higuchi M, Tan T. Controlled release and entrapment of enantiomers in self-assembling scaffolds composed of beta-sheet peptides. Biomacromolecules, 2009b;10:3266–72
  • Zhao Y, Tanaka M, Kinoshita T, Higuchi M, Tan T. Nanofibrous scaffold from self-assembly of β-sheet peptides containing phenylalanine for controlled release. J Control Release, 2010;142:354–60
  • Zheng XT, Li CM. Restoring basal planes of graphene oxides for highly efficient loading and delivery of beta-lapachone. Mol Pharm, 2012;9:615–21
  • Zhou H, Sun X, Zhang L, Zhang P, Li J, Liu Y-N. Fabrication of biopolymeric complex coacervation core micelles for efficient tea polyphenol delivery via a green process. Langmuir, 2012a;28:14553–61
  • Zhou L, Jiang H, Wei S, Ge X, Zhou J, Shen J. High-efficiency loading of hypocrellin B on graphene oxide for photodynamic therapy. Carbon, 2012b;50:5594–604

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.