406
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Development of chitosan–pullulan composite nanoparticles for nasal delivery of vaccines: optimisation and cellular studies

, , , , &
Pages 755-768 | Received 21 Jun 2015, Accepted 10 Jul 2015, Published online: 31 Aug 2015

References

  • Almeida AJ, Alpar HO. Nasal delivery of vaccines. J Drug Target, 1996;3:455–67
  • Alpar HO, Eyles JE, Williamson ED, Somavarapu S. Intranasal vaccination against plague, tetanus and diphtheria. Adv Drug Deliver Rev, 2001;51:173–201
  • Alpar HO, Somavarapu S, Atuah KN, Bramwell V. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv Drug Deliver Rev, 2005;57:411–30
  • Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release, 2006;111:107–16
  • Amidi M, Romeijn SG, Verhoef JC, Junginger HE, Bungener L, Huckriede A, Crommelin DJA, Jiskoot W. N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: Biological properties and immunogenicity in a mouse model. Vaccine, 2007;25:144–53
  • Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev, 2010;62:59–82
  • Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial-cells (Caco-2). Pharm Res, 1994;11:1358–61
  • Bakeev KN, Izumrudov VA, Kuchanov SI, Zezin AB, Kabanov VA. Kinetics and mechanism of interpolyelectrolyte exchange and addition-reactions. Macromolecules, 1992;25:4249–54
  • Borchard G. Calu-3 cells, a valid model for the airway epithelium? STP Pharm Sci, 2002;12:205–11
  • Borges O, Tavares J, de Sousa A, Borchard G, Junginger HE, Cordeiro-Da-Silva A. Evaluation of the immune response following a short oral vaccination schedule with hepatitis B antigen encapsulated into alginate-coated chitosan nanoparticles. Eur J Pharm Sci, 2007;32:278–90
  • Carreno-Gomez B, Duncan R. Evaluation of the biological properties of soluble chitosan and chitosan microspheres. Int J Pharm, 1997;148:231–40
  • Chen Q, Hu Y, Chen Y, Jiang XQ, Yang YH. Microstructure formation and property of chitosan-poly(acrylic acid) nanoparticles prepared by macromolecular complex. Macromol Biosci, 2005;5:993–1000
  • Choi NW, Verbridge SS, Williams RM, Chen J, Kim J-Y, Schmehl R, Farnum CE, Zipfel WR, Fischbach C, Stroock AD. Phosphorescent nanoparticles for quantitative measurements of oxygen profiles in vitro and in vivo. Biomaterials, 2012;33:2710–22
  • Chopra S, Mahdi S, Kaur J, Iqbal Z, Talegaonkar S, Ahmad FJ. Advances and potential applications of chitosan derivatives as mucoadhesive biomaterials in modern drug delivery. J Pharm Pharmacol, 2006;58:1021–32
  • Costalat M, Alcouffe P, David L, Delair T. Controlling the complexation of polysaccharides into multi-functional colloidal assemblies for nanomedicine. J Colloid Interf Sci, 2014;430:147–56
  • Csaba N, Köping-Höggård M, Fernandez-Megia E, Novoa-Carballal R, Riguera R, Alonso MJ. Ionically crosslinked chitosan nanoparticles as gene delivery systems: Effect of PEGylation degree on in vitro and in vivo gene transfer. J Biomed Nanotechnol, 2009;5:162–71
  • Davis SS. Nasal vaccines. Adv Drug Deliver Rev, 2001;51:21–42
  • Davis SS. The use of soluble polymers and polymer microparticles to provide improved vaccine responses after parenteral and mucosal delivery. Vaccine, 2006;24:S7–10
  • de Vasconcelos CL, Bezerril PM, dos Santos DES, Dantas TNC, Pereira MR, Fonseca JLC. Effect of molecular weight and ionic strength on the formation of polyelectrolyte complexes based on poly(methacrylic acid) and chitosan. Biomacromolecules, 2006;7:1245–52
  • Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: Reviewing the state of the art of microsphere preparation process technology. J Control Release, 2005;102:313–32
  • Fujimura Y, Akisada T, Harada T, Haruma K. Uptake of microparticles into the epithelium of human nasopharyngeal lymphoid tissue. Med Mol Morphol, 2006;39:181–6
  • Gaspar R, Duncan R. Polymeric carriers: Preclinical safety and the regulatory implications for design and development of polymer therapeutics. Adv Drug Deliv Rev, 2009;61:220–31
  • Glinel K, Sauvage JP, Oulyadi H, Huguet J. Determination of substituents distribution in carboxymethyl pullulans by NMR spectroscopy. Carbohydr Res, 2000;328:343–54
  • Gupta M, Gupta AK. Hydrogel pullulan nanoparticles encapsulating pBUDLacZ plasmid as an efficient gene delivery carrier. J Control Release, 2004;99:157–66
  • Harding SE, Varum KM, Stokke BT, Smidsrod O. 1991. Molecular weight determination of polysaccharides. In: White CA, ed. Advances in carbohydrate analysis. Vol. 1. Birmingham, UK: JAI Press Ltd, pp. 63–144
  • Hartig SM, Greene RR, Dikov MM, Prokop A, Davidson JM. Multifunctional nanoparticulate polyelectrolyte complexes. Pharm Res, 2007;24:2353–69
  • Hasegawa T, Hirota K, Tomoda K, Ito F, Inagawa H, Kochi C, Soma G, Makino K, Terada H. Phagocytic activity of alveolar macrophages toward polystyrene latex microspheres and PLGA microspheres loaded with anti-tuberculosis agent. Colloids Surf B Biointerfaces, 2007;60:221–8
  • He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010;31:3657–66
  • Hirota K, Terada H. 2012. Endocytosis of particle formulations by macrophages ain its application to clinical treatment. In: Ceresa B, ed. Molecular regulation of endocytosis. Croatia: Intech Open Acces, pp. 413–28
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems -- A review (Part 1). Trop J Pharm Res, 2013;12:255–64
  • Horie K, Sakagami M, Kuramochi K, Hanasaki K, Hamana H, Ito T. Enhanced accumulation of sialyl Lewis X-carboxymethylpullulan conjugate in acute inflammatory lesion. Pharm Res, 1999;16:314–20
  • Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS. Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliver Rev, 2001;51:81–96
  • Jiang WL, Gupta RK, Deshpande MC, Schwendeman SP. Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliver Rev, 2005;57:391–410
  • Kamide K, Dobashi T. 2000. Physical chemistry of polymer solutions. Theoretical background. Amsterdam, The Netherlands: Elsevier B.V
  • Kammona O, Kiparissides C. Recent advances in nanocarrier-based mucosal delivery of biomolecules. J Control Release, 2012;161:781--94
  • Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release, 2006;115:216–25
  • Kean T, Roth S, Thanou M. Trimethylated chitosans as non-viral gene delivery vectors: Cytotoxicity and transfection efficiency. J Control Release, 2005;103:643–53
  • Kensil CR, Mo AXY, Truneh A. Current vaccine adjuvants: An overview of a diverse class. Fron Biosci, 2004;9:2972–88
  • Kotze AF, Luessen HL, deLeeuw BJ, deBoer BG, Verhoef JC, Junginger HE. N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: In vitro evaluation in intestinal epithelial cells (Caco-2). Pharm Res, 1997;14:1197–202
  • Kuper CF, Koornstra PJ, Hameleers DMH, Biewenga J, Spit BJ, Duijvestijn AM, Vriesman PJC, Sminia T. The role of nasopharyngeal lymphoid-tissue. Immunol Today, 1992;13:219–24
  • Leathers TD. Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol, 2003;62:468–73
  • Lin YH, Chung CK, Chen CT, Liang HF, Chen SC, Sung HW. Preparation of nanoparticles composed of chitosan/poly-gamma-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules, 2005;6:1104–12
  • Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, Sung HW. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules, 2007;8:146–52
  • Liu Q, Zhang C, Zheng X, Shao X, Zhang X, Zhang Q, Jiang X. Preparation and evaluation of antigen/N trimethylaminoethylmethacrylate chitosan conjugates for nasal immunization. Vaccine, 2014;32:2582--90
  • Makino K, Yamamoto N, Higuchi K, Harada N, Ohshima H, Terada H. Phagocytic uptake of polystyrene microspheres by alveolar macrophages: Effects of the size and surface properties of the microspheres. Colloids Surf B Biointerfaces, 2003;27:33–9
  • Mangal S, Pawar D, Garg NK, Jain AK, Vyas SP, Raman Rao DSV, Jaganathan KS. Pharmaceutical and immunological evaluation of mucoadhesive nanoparticles based delivery system(s) administered intranasally. Vaccine, 2011;29:4953--62
  • Mao S, Shuai X, Unger F, Wittmar M, Xie X, Kissel T. Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials, 2005;26:6343–56
  • Masuda K, Sakagami M, Horie K, Nogusa H, Hamana H, Hirano K. Evaluation of carboxymethyl pullulan as a novel carrier for targeting immune tissues. Pharm Res, 2001;18:217–23
  • McKeever DJ, Rege JEO. Vaccines and diagnostic tools for animal health: The influence of biotechnology. Livest Prod Sci, 1999;59:257–64
  • Mi FL, Wu YY, Chiu YL, Chen MC, Sung HW, Yu SH, Shyu SS, Huang MF. Synthesis of a novel glycoconjugated chitosan and preparation of its derived nanoparticles for targeting HepG2 cells. Biomacromolecules, 2007;8:892–8
  • Mi FL, Wu YY, Lin YH, Sonaje K, Ho YC, Chen CT, Juang JH, Sung HW. Oral delivery of peptide drugs using nanoparticles self-assembled by poly(γ-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjug Chem, 2008;19:1248–55
  • Mitani S, Yamamoto A, Ikegami H, Usui M, Matuhasi T. Immunoglobulin E-suppressing and immunoglobulin G-enhancing tetanus toxoid prepared by conjugation with pullulan. Infect Immun, 1982;36:971–6
  • Mutsaers SE, Papadimitriou JM. Surface charge of macrophages and their interaction with charged particles. J Leukoc Biol, 1988;44:17–26
  • O'Hagan DT, Valiante NM. Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov, 2003;2:727–35
  • Ohno N, Kurachi K, Yadomae T. Physicochemical properties and antitumor activities of carboxymethylated derivatives of glucan from sclerotinia-sclerotiorum. Chem Pharm Bull, 1988;36:1016–25
  • Pandit S, Cevher E, Zariwala MG, Somavarapu S, Alpar HO. Enhancement of immune response of HBsAg loaded poly (L-lactic acid) microspheres against Hepatitis B through incorporation of alum and chitosan. J Microencapsul, 2007;24:539–52
  • Polnok A, Borchard G, Verhoef JC, Sarisuta N, Junginger HE. Influence of methylation process on the degree of quaternization of N-trimethyl chitosan chloride. Eur J Pharm Biopharm, 2004;57:77–83
  • Ramasamy T, Tran TH, Cho HJ, Kim JH, Kim YI, Jeon JY, Choi H-G, Yong CS, Kim JO. Chitosan-based polyelectrolyte complexes as potential nanoparticulate carriers: Physicochemical and biological characterization. Pharm Res, 2014;31:1302–14
  • Rekha MR, Chandra PS. Pullulan as a promising biomaterial for biomedical applications: A perspective. Trends Biomater Artif Organs, 2007;20:116–21
  • Rodrigues S, Dionísio M, López CR, Grenha A. Biocompatibility of chitosan carriers with application in drug delivery. J Funct Biomater, 2012;3:615–41
  • Sayın B, Somavarapu S, Li XW, Sesardic D, Şenel S, Alpar HO. TMC–MCC (N-trimethyl chitosan–mono-N-carboxymethyl chitosan) nanocomplexes for mucosal delivery of vaccines. Eur J Pharm Sci, 2009;38:362–9
  • Schatz C, Domard A, Viton C, Pichot C, Delair T. Versatile and efficient formation of colloids of biopolymer-based polyelectrolyte complexes. Biomacromolecules, 2004;5:1882–92
  • Sieval AB, Thanou M, Kotze AF, Verhoef JE, Brussee J, Junginger HE. Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride. Carbohydr Polym, 1998;36:157–65
  • Singla AK, Chawla M. Chitosan: Some pharmaceutical and biological aspects – An update. J Pharm Pharmacol, 2001;53:1047–67
  • Slütter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, Kaijzel E, van Eden W, Augustijns P, Löwik C, et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: Nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine, 2010;28:6282--91
  • Subbiah R, Ramalingam P, Ramasundaram S, Kim do Y, Park K, Ramasamy MK, Choi KJ. N,N,N-Trimethyl chitosan nanoparticles for controlled intranasal delivery of HBV surface antigen. Carbohydr Polym, 2012;89:1289--97
  • Sugumaran KR, Sindhu RV, Sukanya S, Aiswarya N, Ponnusami V. Statistical studies on high molecular weight pullulan production in solid state fermentation using jack fruit seed. Carbohydr Polym, 2013;98:854–60
  • Tabata Y, Ikada Y. Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials, 1988;9:356–62
  • Tafaghodi M, Saluja V, Kersten GF, Kraan H, Slütter B, Amorij JP, Jiskoot W. Hepatitis B surface antigen nanoparticles coated with chitosan and trimethyl chitosan: Impact of formulation on physicochemical and immunological characteristics. Vaccine, 2012;30:5341--8
  • Tafaghodi M, Tabassi SAS, Jaafari MR. Induction of systemic and mucosal immune responses by intranasal administration of alginate microspheres encapsulated with tetanus toxoid and CpG-ODN. Int J Pharm, 2006;319:37–43
  • Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliver Rev, 2001;52:117–26
  • Tripathy S, Das S, Chakraborty SP, Sahu SK, Pramanik P, Roy S. Synthesis, characterization of chitosan–tripolyphosphate conjugated chloroquine nanoparticle and its in vivo anti-malarial efficacy against rodent parasite: A dose and duration dependent approach. Int J Pharm, 2012;434:292–305
  • Tsuji K, Fujimoto M, Masuko F, Nagase T. 1978. Carboxymethylated pullulan and method for producing same. US Patent 4090016
  • Ulmer JB. Enhancement of vaccine potency through improved delivery. Expert Opin Bioll Ther, 2004;4:1045–51
  • Vajdy M, Srivastava I, Polo J, Donnelly J, O'Hagan D, Singh M. Mucosal adjuvants and delivery systems for protein-, DNA- and RNA-based vaccines. Immunol Cell Biol, 2004;82:617–27
  • van der Lubben IM, Kersten G, Fretz MM, Beuvery C, Verhoef JC, Junginger HE. Chitosan microparticles for mucosal vaccination against diphtheria: Oral and nasal efficacy studies in mice. Vaccine, 2003;21:1400–8
  • van der Lubben IM, Verhoef JC, Fretz MM, Van Opdorp FAC, Mesu I, Kersten G, Junginger HE. Trimethyl chitosan chloride (TMC) as a novel excipient for oral and nasal immunisation against diphtheria. STP Pharm Sci, 2002;12:235–42
  • van der Merwe SM, Verhoef JC, Verheijden JHM, Kotze AF, Junginger HE. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur J Pharm Biopharm, 2004;58:225–35
  • Venkatesan C, Vimal S, Sahul Hameed AS. Synthesis and characterization of chitosan tripolyphosphate nanoparticles and its encapsulation efficiency containing Russell's viper snake venom. J Biochem Mol Toxicol, 2013;27:406–11
  • Vila A, Sanchez A, Janes K, Behrens I, Kissel T, Jato JLV, Alonso MJ. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm, 2004;57:123–31
  • Wang TW, Xu Q, Wu Y, Zeng AJ, Li M, Gao X. Quaternized chitosan (QCS/poly(aspartic acid) nanoparticles as a protein drug delivery system. Carbohydr Res, 2009;344:908–14
  • Yamaya S, Yamamoto A, Komiya T, Mizuguchi J, Matuhasi T. Preparation of a diphtheria-toxin pullulan conjugate that elicits good IgG antibody production with poor IgE synthesis. Vaccine, 1990;8:65–9
  • Yang Y-W, Hsu PY-J. The effect of poly(d,l-lactide-co-glycolide) microparticles with polyelectrolyte self-assembled multilayer surfaces on the cross-presentation of exogenous antigens. Biomaterials, 2008;29:2516–26
  • Yeh M-K, Cheng K-M, Hu C-S, Huang Y-C, Young J-J. Novel protein-loaded chondroitin sulfate–chitosan nanoparticles: Preparation and characterization. Acta Biomater, 2011;7:3804–12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.