353
Views
28
CrossRef citations to date
0
Altmetric
Research Article

Development of chitosan–pullulan composite nanoparticles for nasal delivery of vaccines: in vivo studies

, , , &
Pages 769-783 | Received 21 Jun 2015, Accepted 10 Jul 2015, Published online: 31 Aug 2015

References

  • Abbas AK, Lichtman AH. 2006. Basic immunology. 2nd ed. Philadelphia, PA: Elsevier Store
  • Almeida AJ, Alpar HO. Nasal delivery of vaccines. J Drug Target, 1996;3:455–67
  • Alpar HO, Eyles JE, Williamson ED, Somavarapu S. Intranasal vaccination against plague, tetanus and diphtheria. Adv Drug Deliver Rev, 2001;51:173–201
  • Alpar HO, Somavarapu S, Atuah KN, Bramwell V. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv Drug Deliver Rev, 2005;57:411–30
  • Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release, 2006;111:107–16
  • Amidi M, Romeijn SG, Verhoef JC, Junginger HE, Bungener L, Huckriede A, Crommelin DJA, Jiskoot W. N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: Biological properties and immunogenicity in a mouse model. Vaccine, 2007;25:144–53
  • Baudner BC, Morandi M, Giuliani MM, Verhoef JC, Junginger HE, Costantino P, Rappuoli R, Del Giudice G. Modulation of immune response to group C meningococcal conjugate vaccine given intranasally to mice together with the LTK63 mucosal adjuvant and the trimethyl chitosan delivery system. J Infect Dis, 2004;189:828–32
  • Baylor NW, Egan W, Richman P. Aluminum salts in vaccines-US perspective. Vaccine, 2002;20:S18–23
  • Bendelac A, Fearon DT. Innate pathways that control acquired immunity. Curr Opin Immunol, 1997;9:1–3
  • Biedermann T, Röcken M, Carballido JM. TH1 and TH2 lymphocyte development and regulation of TH cell-mediated immune responses of the skin. J Invest Dermatol Symp Proceed, 2004;9:5–14
  • Boonyo W, Junginger HE, Waranuch N, Polnok A, Pitaksuteepong T. Chitosan and trimethyl chitosan chloride (TMC) as adjuvants for inducing immune responses to ovalbumin in mice following nasal administration. J Control Release, 2007;121:168–75
  • Borges O, Silva M, de Sousa A, Borchard G, Junginger HE, Cordeiro-da-Silva A. Alginate coated chitosan nanoparticles are an effective subcutaneous adjuvant for hepatitis B surface antigen. Int Immunopharmacol, 2008;8:1773–80
  • Borges O, Tavares J, de Sousa A, Borchard G, Junginger HE, Cordeiro-Da-Silva A. Evaluation of the immune response following a short oral vaccination schedule with hepatitis B antigen encapsulated into alginate-coated chitosan nanoparticles. Eur J Pharm Sci, 2007;32:278–90
  • Cervi L, MacDonald AS, Kane C, Dzierszinski F, Pearce EJ. Cutting edge: Dendritic cells copulsed with microbial and helminth antigens undergo modified maturation, segregate the antigens to distinct intracellular compartments, and concurrently induce microbe-specific Th1 and helminth-specific Th2 responses. J Immunol, 2004;172(4):2016–20
  • Chen Q, Hu Y, Chen Y, Jiang XQ, Yang YH. Microstructure formation and property of chitosan-poly (acrylic acid) nanoparticles prepared by macromolecular complex. Macromol Biosci, 2005;5:993–1000
  • Chopra S, Mahdi S, Kaur J, Iqbal Z, Talegaonkar S, Ahmad FJ. Advances and potential applications of chitosan derivatives as mucoadhesive biomaterials in modern drug delivery. J Pharm Pharmacol, 2006;58:1021–32
  • Cleland JL. Single-administration vaccines: Controlled release technology to mimic repeated immunizations. Trends Biotechnol, 1999;17:25–9
  • Cooper CL, Dubin PL, Kayitmazer AB, Turksen S. Polyelectrolyte protein complexes. Curr Opin Colloid Interface Sci, 2005;10:52–78
  • Davis SS. Nasal vaccines. Adv Drug Deliver Rev, 2001;51:21–42
  • Davis SS. The use of soluble polymers and polymer microparticles to provide improved vaccine responses after parenteral and mucosal delivery. Vaccine, 2006;24:S7–10
  • de Vasconcelos CL, Bezerril PM, dos Santos DES, Dantas TNC, Pereira MR, Fonseca JLC. Effect of molecular weight and ionic strength on the formation of polyelectrolyte complexes based on poly(methacrylic acid) and chitosan. Biomacromolecules, 2006;7:1245–52
  • Diwan M, Tafaghodi M, Samuel J. Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J Control Release, 2002;85:247–62
  • Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: Reviewing the state of the art of microsphere preparation process technology. J Control Release, 2005;102:313–32
  • Fujimura Y, Akisada T, Harada T, Haruma K. Uptake of microparticles into the epithelium of human nasopharyngeal lymphoid tissue. Med Mol Morphol, 2006;39:181–6
  • Gupta RK. Aluminum compounds as vaccine adjuvants. Adv Drug Deliv Rev, 1998;32:155–72
  • Hartig SM, Greene RR, Dikov MM, Prokop A, Davidson JM. Multifunctional nanoparticulate polyelectrolyte complexes. Pharm Res, 2007;24:2353–69
  • Holmgren J, Czerkinsky C, Eriksson K, Mharandi A. Mucosal immunisation and adjuvants: A brief overview of recent advances and challenges. Vaccine, 2003;21:S89–95
  • Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med, 2005;11:S45–53
  • Horie K, Sakagami M, Masuda K, Notoya M, Hamana H, Yoshikawa T, Hirano K. Sialyl Lewis X-carboxymethylpullulan conjugate: A novel homing device to spleen and lymph nodes. Biol Pharm Bull, 2004;27:1275–80
  • Iho S, Maeyama J-I, Suzuki F. CpG oligodeoxynucleotides as mucosal adjuvants. Hum Vaccin Immunother, 2015;11:755–60
  • Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS. Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliver Rev, 2001;51:81–96
  • Janeway CA, Travers P, Walport M, Shlomchik MJ. 2005. Immunobiology. 6th ed. New York: Garland Science Publishing
  • Johansen P, Estevez F, Zurbriggen R, Merkle HP, Gluck R, Corradin G, Gander B. Towards clinical testing of a single-administration tetanus vaccine based on PLA/PLGA microspheres. Vaccine, 2000;19:1047–54
  • Kensil CR, Mo AXY, Truneh A. Current vaccine adjuvants: An overview of a diverse class. Front Biosci, 2004;9:2972–88
  • Kidd P. Th1/Th2 Balance: The hypothesis, its limitations, and implications for health and disease. Altern Med Rev, 2003;8:223–46
  • Kotzé AF, LueBen HL, de Leeuw BJ, de Boer BG, Verhoef JC, Junginger HE. N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: In vitro evaluation in intestinal epithelial cells (Caco-2). Pharm Res, 1997;14:1197–202
  • Kovarik J, Bozzotti P, Tougne C, Davis HL, Lambert P-H, Krieg AM, Siegrist C-A. Adjuvant effects of CpG oligodeoxynucleotides on responses against T-independent type 2 antigens. Immunology, 2001;102:67–76
  • Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov, 2006;5:471–84
  • Kuper CF, Koornstra PJ, Hameleers DMH, Biewenga J, Spit BJ, Duijvestijn AM, Vriesman PJC, Sminia T. The role of nasopharyngeal lymphoid-tissue. Immunol Today, 1992;13:219–24
  • Lin C-Y, Lin S-J, Yang Y-C, Wang D-Y, Cheng H-F, Yeh M-K. Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases. Hum Vaccin Immunother, 2015;11:650–6
  • Liu Q, Zhang C, Zheng X, Shao X, Zhang X, Zhang Q, Jiang X. Preparation and evaluation of antigen/N-trimethylaminoethylmethacrylate chitosan conjugates for nasal immunization. Vaccine, 2014;32:2582–90
  • Maeyama J, Takatsuka H, Suzuki F, Kubota A, Horiguchi S, Komiya T, Shimada I, Murata E, Osawa Y, Kitagawa H, et al. A palindromic CpG-containing phosphodiester oligodeoxynucleotide as a mucosal adjuvant stimulates plasmacytoid dendritic cell-mediated T(H)1 immunity. PLoS One, 2014;9:e88846
  • Mangal S, Pawar D, Garg NK, Jain AK, Vyas SP, Raman Rao DSV, Jaganathan KS. Pharmaceutical and immunological evaluation of mucoadhesive nanoparticles based delivery system(s) administered intranasally. Vaccine, 2011;29:4953–62
  • Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol, 2009;9:287–93
  • McCluskie MJ, Weeratna RD, Payette PJ, Davis HL. The potential of CpG oligodeoxynucleotides as mucosal adjuvants. Crit Rev Immunol, 2001;21:103–20
  • McNeela EA, O'Connor D, Jabbal-Gill I, Illum L, Davis SS, Pizza M, Peppoloni S, Rappuoli R, Mills KHG. A mucosal vaccine against diphtheria: Formulation of cross reacting material (CRM197) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 responses following nasal delivery. Vaccine, 2000;19:1188–98
  • Mitani S, Yamamoto A, Ikegami H, Usui M, Matuhasi T. Immunoglobulin E-suppressing and immunoglobulin G-enhancing tetanus toxoid prepared by conjugation with pullulan. Infect Immun, 1982;36:971–6
  • Mori T, Murakami M, Okumura M, Kadosawa T, Uede T, Fujinaga T. Mechanism of macrophage activation by chitin derivatives. J Vet Med Sci, 2005;67:51–6
  • Moschos SA, Bramwell VW, Somavarapu S, Alpar HO. Adjuvant synergy: The effects of nasal coadministration of adjuvants. Immunol Cell Biol, 2004;82:628–37
  • Mosmann TR, Coffman RL. Heterogeneity of cytokine secretion patterns and functions of helper T cells. Adv Immunol, 1989;46:111–47
  • Neutra MR, Kozlowski PA. Mucosal vaccines: The promise and the challenge. Nat Rev Immunol, 2006;6:148–58
  • Nils L. Recent progress in mucosal vaccine development: Potential and limitations. Nat Rev Immunol, 2012;12:592–605
  • O'Hagan DT. 2000. Vaccine adjuvants; Preparation methods and research protocols. Totowa, NJ: Humana Press
  • Pandit S, Cevher E, Zariwala MG, Somavarapu S, Alpar HO. Enhancement of immune response of HBsAg loaded poly (L-lactic acid) microspheres against Hepatitis B through incorporation of alum and chitosan. J Microencapsul, 2007;24:539–52
  • Rajapaksa TE, Bennett KM, Hamer M, Lytle C, Rodgers VGJ, Lo DD. Intranasal M cell uptake of nanoparticles is independently influenced by targeting ligands and buffer ionic strength. J Biol Chem, 2010;285:23739–46
  • Ruiz-Palacios GM, Pérez-Schael I, Velázquez FR, Abate H, Breuer T, Clemens SC, Cheuvart B, Espinoza F, Gillard P, Innis BL, et al. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med, 2006;54:11–22
  • Sánchez Vallecillo S, Ullio Gamboa GV, Palma SD, Harman MF, Chiodetti AL, Morón G, Allemandi DA, Pistoresi-Palencia MC, Maletto BA. Adjuvant activity of CpG-ODN formulated as a liquid crystal. Biomaterials, 2014;35:2529–42
  • Sayin B, Somavarapu S, Li XW, Thanou M, Sesardic D, Alpar HO, Senel S. Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int J Pharm, 2008;363:139–48
  • Schatz C, Domard A, Viton C, Pichot C, Delair T. Versatile and efficient formation of colloids of biopolymer-based polyelectrolyte complexes. Biomacromolecules, 2004;5:1882–92
  • Sharma R, Agrawal U, Mody N, Vyas SP. Polymer nanotechnology based approaches in mucosal vaccine delivery: Challenges and opportunities. Biotechnol Adv, 2015;33:64–79
  • Singh J, Pandit S, Bramwell VW, Alpar HO. Diphtheria toxoid loaded poly-(epsilon-caprolactone) nanoparticles as mucosal vaccine delivery systems. Methods, 2006;38:96–105
  • Slütter B, Bal SM, Ding Z, Jiskoot W, Bouwstra JA. Adjuvant effect of cationic liposomes and CpG depends on administration route. J Control Release, 2011;154:123–30
  • Sugumaran KR, Sindhu RV, Sukanya S, Aiswarya N, Ponnusami V. Statistical studies on high molecular weight pullulan production in solid state fermentation using jack fruit seed. Carbohydr Polym, 2013;98:854–60
  • Tafaghodi M, Tabassi SAS, Jaafari MR. Induction of systemic and mucosal immune responses by intranasal administration of alginate microspheres encapsulated with tetanus toxoid and CpG-ODN. Int J Pharm, 2006;319:37–43
  • Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliver Rev, 2001;52:117–26
  • Tsuji K, Fujimoto M, Masuko F, Nagase T. 1978. Carboxymethylated pullulan and method for producing same. US Patent 4090016
  • Vajdy M, Srivastava I, Polo J, Donnelly J, O'Hagan D, Singh M. Mucosal adjuvants and delivery systems for protein-, DNA- and RNA-based vaccines. Immunol Cell Biol, 2004;82:617–27
  • van der Lubben IM, Kersten G, Fretz MM, Beuvery C, Verhoef JC, Junginger HE. Chitosan microparticles for mucosal vaccination against diphtheria: Oral and nasal efficacy studies in mice. Vaccine, 2003;21:1400–8
  • van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan for mucosal vaccination. Adv Drug Deliver Rev, 2001a;52:139–44
  • van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci, 2001b;14:201–7
  • van der Merwe SM, Verhoef JC, Verheijden JHM, Kotze AF, Junginger HE. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur J Pharm Biopharm, 2004;58:225–35
  • Vila A, Sanchez A, Janes K, Behrens I, Kissel T, Jato JLV, Alonso MJ. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm, 2004;57:123–31
  • Wang X, Meng D. Innate endogenous adjuvants prime to desirable immune responses via mucosal routes. Protein Cell, 2015;6:170–84
  • Woodrow KA, Bennett KM, Lo DD. Mucosal vaccine design and delivery. Annu Rev Biomed Eng, 2012;14:17–46
  • Wu KY, Wu M, Fu ML, Li H, Yang Y, Zhang H, Cheng C, Wang ZZ, Wang XY, Lu XB, et al. A novel chitosan CpG nanoparticle regulates cellular and humoral immunity of mice. Biomed Environ Sci, 2006;19:87–95
  • Wu Y, Wang X, Csencsits KL, Haddad A, Walters N, Pascual DW. M cell-targeted DNA vaccination. Proc Natl Acad Sci USA, 2001;98:9318–23
  • Yamaya S, Yamamoto A, Komiya T, Mizuguchi J, Matuhasi T. Preparation of a diphtheria-toxin pullulan conjugate that elicits good IgG antibody production with poor IgE synthesis. Vaccine, 1990;8:65–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.