1,524
Views
26
CrossRef citations to date
0
Altmetric
Letter to the Editor

Hyperthermia classic commentary: ‘Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia’ by Andreas Jordan et al., International Journal of Hyperthermia, 1993;9:51–68.

Pages 512-516 | Published online: 24 Oct 2009

References

  • Jordan A, Wust P, Fahling H, et al. Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia. Int J Hyperthermia 1993; 9: 51–68
  • Wust P, Nadobny J, Fahling H, et al. [The influencing factors and interfering effects in the control of the power distributions with the BSD-20000 hyperthermia ring system. 1. The clinical observables and phantom measurements]. Strahlenther Onkol 1990; 166: 822–830
  • Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia 1994; 10: 457–83
  • Brezovich IA, Atkinson WJ, Lilly MB. Local hyperthermia with interstitial techniques. Cancer Res 1984; 44: 4752–4756
  • Brezovich IA. Low frequency hyperthermia: Capacitive and ferromagnetic thermoseed methods. Med Phys Monograph 1988; 16: 82–111
  • Oleson JR, Cetas TC, Corry PM. Hyperthermia by magnetic induction: Experimental and theoretical results for coaxial coil pairs. Radiat Res 1983; 95: 175–186
  • Oleson JR, Heusinkveld RS, Manning MR. Hyperthermia by magnetic induction: 2. Clinical experience with concentric electrodes. Int J Radiat Oncol Biol Phys 1983; 9: 549–556
  • Stauffer PR, Cetas TC, Jones RC. Magnetic induction heating of ferromagnetic implants for inducing localized hyperthermia in deep-seated tumors. IEEE Trans Biomed Eng 1984; 31: 235–250
  • Stauffer PR, Cetas TC, Fletcher AM, et al. Observation on the use of ferromagnetic implants for inducing hyperthermia. IEEE Trans Biomed Eng 1984; 31: 76–90
  • Gilchrist RK, Shorey WD, Hanselman RC, et al. Selective inductive heating of lymph nodes. Ann Surg 1957; 146: 596–606
  • Medal R, Shorey W, Gilchrist RK, Barker W, Hanselman R. Controlled radio-frequency generator for production of localized heat in intact animal. A M A Arch Surg 1959; 79: 427–431
  • Chan DCF, Kirpotin DB, Bunn PA. Synthesis and evaluation of colloidal magnetic iron oxides for the site specific radiofrequency-induced hyperthermia of cancer. J Magn Magn Mater 1993; 122: 374–378
  • Gordon RT, Hines JR, Gordon D, Estes W. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypoth 1979; 5: 83–102
  • Lerch IA, Pizzarello DJ. The physics and biology of tumor-specific, particle-induction hyperthermia. Med Phys 1986; 13: 83
  • Lerch IA, Pizzarello DJ, Kohn S, editors. Tumor specific particle induction heating: Preliminary findings of a confirmatory study. AAAS Meeting, Philadelphia, 1986
  • Rand RW, Snow HD, Brown WJ. Thermomagnetic surgery for cancer. J Surg Res 1982; 33: 177–83
  • Sato M, Nakajima G, Namikawa T, Yamazaki Y. Magnetic properties and microstructures of Fe3O4-gamma-Fe2O3 intermediate state. Intermag' 90 1990
  • Mitsumori M, Hiraoka M, Shibata T, et al. Development of intra-arterial hyperthermia using a dextran-magnetite complex. Int J Hyperthermia 1994; 10: 785–793
  • Tazawa K, Takemori S, Yamashita I, et al. Intracellular hyperthermia by fixated submicron particle exciting in inductive field of 500 KHZ. Proceedings of the Japanese Cancer Association, Tokyo, 1989
  • Luderer AA, Borrelli NF, Panzarino JN, et al. Glass-ceramic-mediated, magnetic-field-induced localized hyperthermia: Response of a murine mammary carcinoma. Radiat Res 1983; 94: 190–198
  • Borrelli NF, Luderer AA, Panzarino JN. Hysteresis heating for the treatment of tumours. Phys Med Biol 1984; 29: 487–494
  • Hergt R, Andrä W, d’Ambly CG, et al. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn 1998; 34: 3745–3753
  • Hergt R, Hiergeist R, Hilger I, et al. Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mat 2004; 270: 345–357
  • Hergt R, Hiergeist R, Zeisberger M, et al. Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Mag Mag Mater 2005; 293: 80–86
  • Dutz S. Nanopartikel in der Medizin. Verlag, Hamburg 2007
  • Hergt R, Dutz S, Röder M. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys: Condens Matter 2008; 20: 12
  • Popplewell J, Rosensweig RE, Johnston RJ. Magnetic field induced rotations in ferrofluids. IEEE Trans Magn 1990; 26: 1852–1854
  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 2002; 252: 370–374
  • Barry SE. Challenges in the development of magnetic particles for therapeutic applications. Int J Hyperthermia 2008; 24: 451–466
  • Jones SK, Gray BN, Burton MA, Codde JP, Street R. Evaluation of ferromagnetic materials for low-frequency hysteresis heating of tumours. Phys Med Biol 1992; 37: 293–299
  • Moroz P, Jones SK, Gray BN. Magnetically mediated hyperthermia: Current status and future directions. Int J Hyperthermia 2002; 18: 267–284
  • Eggemann AS, Majetich SA, Farrell D, Pankhurst QA. Size and concentration effects on high frequency hysteresis of iron oxide nanoparticles. IEEE Trans Magn 2007; 43: 2451–2453
  • Sun S, Zeng H. Size controlled synthesis of magetite nanoparticles. J Am Chem Soc 2002; 124: 8204–8205
  • Glöckl G, Hergt R, Zeisberger M, et al. Effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J Phys: Condens Matter 2006; 18: 2935–2949
  • Jordan A, Rheinländer T, Waldöfner N, Scholz R. Increase of the specific absorption rate (SAR) by magnetic fractionation of magnetic fluids. J Nanoparticle Res 2003; 5: 597–600
  • Hütten A, Sudfeld D, Ennen I, et al. Ferromagnetic FeCo nanoparticles for biotechnology. J Magn Magn Mater 2005; 293: 93–101
  • Gneveckow U, Jordan A, Scholz R, et al. Description and characterization of the novel hyperthermia and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia. Med Phys 2004; 31: 1444–1451
  • Weaver JB, Rauwerdink AM, Hansen EW. Magnetic nanoparticle temperature estimation. Med Phys 2009; 36: 1822–1829
  • Klingeler R, Hampel S, Buchner B. Carbon nanotube-based biomedical agents for heating, temperature sensoring and drug delivery. Int J Hyperthermia 2008; 24: 496–505
  • Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomed 2007; 2: 23–39
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26: 3995–4021
  • Alexiou C, Jurgons R, Schmid RJ, et al. Magnetic drug targeting biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target 2003; 11: 139–149
  • Lubbe AS, Alexiou C, Bergemann C. Clinical applications of magnetic drug targeting. J Surg Res 2001; 95: 200–206
  • Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 2008; 24: 467–474

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.