413
Views
10
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Prospects for radiofrequency hyperthermia applicator research. I – Pre-optimised prototypes of endocavitary applicators with matching interfaces for prostate hyperplasia and cancer treatments

, , &
Pages 187-198 | Received 02 Sep 2010, Accepted 04 Sep 2010, Published online: 29 Mar 2011

References

  • Mendeki J, Friedenthal E, Botslein C, Sterzer F, Paglione R, Nowodroski M, Beck E. Microwave-induced hyperthermia in cancer treatment: Apparatus and preliminary results. Int J Rad Onc Biol Phys 1978; 4: 1095–1103
  • Debicki P, Okoniewski M, Oconiewska E, Shrivastava PN, Debicka AM, Baert LV, Petrovich Z. Cooled microwave transrectal applicator with adjustable directional beam for prostate treatment. Int J Hyperthermia 1995; 11: 95–108
  • Sapozinc MD, Boyd SD, Astrahan MA, Gabor J, Petrovich Z. Transurethral hyperthermia for benign prostatic hyperplasia: Preliminary clinical results. J Urology 1990; 143: 944–950
  • Roos D, Hamnerius Y, Alpsten M, Borghede G, Friberg L. Two microwave applicators for intracavitary hyperthermia treatment of cancer colli uteri. Phys Med Biol 1989; 34: 1917–1921
  • Astrahan MA, Sapozink MD, Cohen D, Luxton G, Kampp TD, Boyd S, Petrovich Z. Microwave applicator for transurethral hyperthermia of benign prostatic hyperplasia. Int J Hyperthermia 1989; 5: 283–296
  • Astrahan MA, Imanaka K, Jozsef G, Ameye F, Baert L, Sapozink MD, Boyd S, Petrovich Z. Heating characteristics of a helical microwave applicator for transurethral hyperthermia of benign prostatic hyperplasia. Int J Hyperthermia 1991; 7: 141–155
  • Debicki P, Astrahan MA, Ameye F, Oven R, Baert L, Haczewski A, Petrovich Z. Temperature steering in prostate by simultaneous transurethral and transrectal hyperthermia. Urology 1992; 40: 300–307
  • Debicki PS, Haczewski A, Baert LV, Petrovich Z. Microwave transurethral applicator with loaded-dipole-antenna (HLDA) for prostate treatment. Int J Hyperthermia 2001; 17: 302–320
  • Liu RH, Zhang EY, Gross EJ, Cetas TC. Heating pattern of helical microwave intracavitary oesophageal applicator. Int J Hyperthermia 1991; 7: 577–586
  • Chou CK, MacDougall JA, Chan KW, Vora H, Howard H, Straud C, Terr L. Intracavitary hyperthermia and radiation of esophageal cancer. Electricity and magnetism in Biology and Medicine, M Blanc. San Francisco Press, San FranciscoUSA 1993; 793–796
  • Li DJ, Chou CK, Luk KH, Wang JH, Xie CF, McDougall JA, Huang GZ. Design of intracavitary microwave applicator for treatment of uterine cervix carcinoma. Int J Hyperthermia 1991; 7: 693–701
  • Roos D, Seegenschmied MH, Klautke G, Erb J, Sorbe B. A new microwave applicator with integrated cooling system for intracavitary hyperthermia of vaginal carcinoma. Int J Hyperthermia 1996; 12: 743–756
  • Luk KH, Jiang HB, Chou CK. SAR patterns of a helical microwave intracavitary applicator. Hyperthermic Oncology, J Overgaard. Taylor & Francis, London 1984; I: 591–594
  • Li DJ, Luk KH, Jiang HB, Chou CK, Hwang GH. Design and thermometry of an intracavitary microwave applicator suitable for the treatment of some vaginal and rectal cancers. Int J Rad Onc Biol Phys 1984; 10: 2155–2162
  • Astrahan MA, Sapozink MD, Luxton G, Kampp TD, Petrovich Z. A technique for combining microwave hyperthermia with intraluminal brachytherapy of the oesophagus. Int J Hyperthermia 1989; 5: 37–51
  • Liru Z, Jianguo W, Zhong C, Guizhu W, Lingy L, Weilian L. 2450 MHz oesophagus applicators with multi-temperature sensors and its temperature control. Int J Hyperthermia 1990; 6: 745–753
  • Hand JW, Blake PR, Hopewell JW, Lambert HW, Field SB. A coaxial applicator for intracavitary hyperthermia of carcinoma of the cervix. Biomedical Thermology. Alan Liss, New York 1982; 635–639
  • Valdagni R, Amichetti A, Cristoforetti L. Intracavitary hyperthermia construction and heating pattern of individualised vaginal prototype applicator. Int J Hyperthermia 1988; 4: 457–463
  • Zong QR, Chou CK, MacDougall JA, Chan KW, Luk KH. Intracavitary hyperthermia applicators for treating nasopharyngeal and cervical cancers. Int J Hyperthermia 1990; 6: 997–1004
  • Hoffman RM, Macdonald R, Monga M, Wilt TJ. Transurethral microwave thermotherapy versus transurethral resection for treating benign prostatic hyperplasia: A systematic review. Br J Urology 2004; 94: 1031–1036
  • Kaatee RSJP, Crezee J, Kanis AP, Lagendijk JJW, Levendag PC, Visser AG. Design of applicators for a 27 MHz multielectrode current source interstitial hyperthermia system: Impedance matching and effective power. Phys Med Biol 1997; 42: 1087–1108
  • Deurloo IKK, Visser AG, Morawscat M, van Geel CAJF, van Roon OC, Levendag PC. Application of a capacitive-coupling interstitial hyperthermia system at 27 MHz: Study of different applicator configurations. Phys Med Biol 1991; 36: 119–132
  • Chen X, Diederich CJ, Wootton JH, Pouliot J, Hsu I-C. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia. Int J Hyperthermia 2010; 26: 39–55
  • Shinohara K. Thermal ablation of prostate diseases: Advantages and limitations. Int J Hyperthermia 2004; 20: 679–697
  • Stauffer P. Evolving technology for thermal therapy of cancer. Int J Hyperthermia 2005; 21: 731–744
  • Burtnyk M, Chopra R, Bronskill M. Quantitative analysis of 3-D conformal MRI-guided transurethral ultrasound therapy of the prostate: Theoretical simulations. Int J Hyperthermia 2009; 25: 116–131
  • Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldöfner N, Scholz R, Jung K, Jordan A, Wust P, Loening SA. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial. Int J Hyperthermia 2007; 23: 315–323
  • Barry SE. Challenges in the development of magnetic particles for therapeutic applications. Int J Hyperthermia 2008; 24: 451–466
  • Kok HP, van Haaren PMA, van de Kamer JB, Creeze J. Theoretical comparison of intraluminal heating techniques. Int J Hyperthermia 2007; 23: 395–411
  • Malek RS, Nahen K. Laser treatment of obstructive BPH. Contemp Urology 2004; 1–5
  • Diederich C. Thermal ablation and high temperature thermal therapy. Overview of technology of technology and clinical implementation. Int J Hyperthermia 2005; 21: 745–753
  • Franconi C, Holowacsz J, Vrba J, Micali F, Bonacina R, Pesce F. 27 MHz flexible heating field for interstitial and endocavitary applicators. Hyperthermic Oncology, EW Gerner, TC Cetas. Arizona University Press, Tucson 1992; I: 270
  • Guy AW, Lehmann J, Stonebridge JB. Therapeutic application of electromagnetic power. Proc IEEE 1974; 62: 55–75
  • Vrba J, Franconi C, Lapes M. Theoretical limits for the penetration depth of intracavitary applicators. Int J Hyperthermia 1996; 12: 737–742
  • Balanis CA. Antenna Theory. Wiley, New York 1982
  • King R, Trembly B, Strohbehn J. The electromagnetic field of insulated antenna in a conducting or insulated medium. IEEE Trans Micro Theory Tech 1983; 31: 574–583
  • Casey JP, Bausal R. The near field of an insulated dipole in a conducting or dielectric medium. IEEE Transactions MTT 1986; 34: 459–463
  • Hamada L, Saito L, Yoshimura H, Ito K. Dielectric-loaded coaxial-slot antenna for interstitial microwave hyperthermia: Longitudinal control of heating patterns. Int J Hyperthermia 2000; 16: 219–229
  • Gouzuonasis I, Karathanasis K, Karanasiou I, Uzunoglu N. Passive multi-frequency brain imaging and hyperthermia irradiation apparatus: The use of dielectric matching materials in phantom experiments. Meas Sci Technol 2009; 20: 104–122
  • Franconi C, Tiberio CA, Raganella L, Begnozzi L. Low frequency RF twin dipole applicator for intermediate depth hyperthermia. IEEE Trans MTT 1986; 34: 612–619
  • Ellinger DC, Chute FS, Vermeulen FE. Evaluation of a semi-cylindrical solenoid as an applicator for radiofrequency hyperthermia. IEEE Trans Biomed Eng 1989; 16: 967–994
  • Raganella L, Banci G, Vannucci I, Franconi C, Tiberio CA. 27 MHz conformal capacitive ring (CR) applicators for uniform hyperthermic/diathermic treatment of body segments with axial fields. IEEE Trans Biomed Eng 1989; 36: 1124–1132
  • Franconi C, Banci G, Tiberio CA. RF H-field fluxtubes for safe and controlled hyperthermia. Int J Hyperthermia 1994; 10: 537–551
  • Franconi C. Hyperthermia heating technology and devices. Physics and Technology of Hyperthermia, SB Field, C Franconi. Nijhoff, Amsterdam 1987; 80–122
  • Hirachi Y, Nakajo M, Takeshita T, Churei H. The position of the opposite flat applicator changes the SAR and thermal distributions of the RF capacitive intracavitary hyperthermia. Int J Hyperthermia 2000; 16: 193–203

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.