1,925
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Hyperthermic effects on behavior

Pages 353-373 | Received 01 Dec 2010, Accepted 22 Dec 2010, Published online: 18 May 2011

References

  • O’Callaghan JP, Holtzman SG. Quantification of the analgesic activity of narcotic antagonists by a modified hot-plate procedure. J Pharm Exp Ther 1985; 192: 497–505
  • Bannon AW, Gunther KL, Decker MW. Is epibatidine really analgesic? Dissociation of the locomotor activity, temperature, and analgesic effects of (±)-epibatidine. Pharmacol Biochem Behav 1995; 51: 693–698
  • King TE, Joynes RW, Payne M. The tail-flick test: II. The role of supraspinal systems and avoidance learning. Behav Neurosci 1997; 111: 754–767
  • Moskowitz AS, Terman GW, Liebeskind JC. Stress-induced analgesia in the mouse: Strain comparisons. Pain 1985; 23: 67–72
  • Rubinstein M, Mogil JS, Japon M, Chan EC, Allen RG, Low MJ. Absence of opioid-stress-induce analgesia in mice lacking β-endorphin by site-directed mutagenesis. Proc Natl Acad Sci USA 1996; 93: 3995–4000
  • Mogil JS, Belknap JK. Sex and genotype determine the selective activation of neurochemically-distinct mechanisms of swim stress-induced analgesia. Pharmacol Biochem Behav 1997; 56: 61–66
  • Crawley JN. What's wrong with my mouse? Behavioral phenotyping of transgenic and knockout mice. New York: Wiley-Liss: 2000, pp 65–81
  • Saeki S, Yaksh TI. Suppression of nociceptive responses by spinal mu opioid agonists: Effects of stimulus intensity and agonist efficacy. Anesth Analges 1993; 77: 265–277
  • Chakour MC, Gibson SJ, Bradbeer M, Helma RD. The effect of age on Aδ- and C-fiber thermal pain perception. Pain 1996; 64: 143–152
  • Yeomans DC, Pirec V, Proudfit HK. Nociceptive responses to high and low rates of noxious cutaneous heating are mediated by different nociceptors in the rat: Behavioral evidence. Pain 1996; 68: 133–140
  • McCormack K, Prather P, Chapleo C. Some new insights into the effects of opioids in phasic and tonic nociceptive tests. Pain 1998; 78: 79–98
  • Bodnar RJ, Romero M-T, Kramer E. Organismic variables and pain inhibition: Roles of gender and aging. Brain Res Bull 1988; 21: 947–953
  • Hamm RJ, Knisely JS. Developmental aspects of nociception. Brain Res Bull 1988; 21: 933–946
  • Vierck CJ, Acosta-Rua AJ, Rossi HL, Neubert JK. Sex differences in thermal pain sensitivity and sympathetic reactivity for two strains of rat. J Pain 2008; 9: 739–749
  • Riley J III, Robinson M, Wise EA, Myers CD, Fillingim RB. Sex differences in the perception of noxious experimental stimuli: A meta-analysis. Pain 1998; 74: 181–187
  • Watson PJ, Latif RK, Rowbotham DJ. Ethnic differences in thermal pain responses: A comparison of South Asian and White British healthy males. Pain 2005; 118: 194–200
  • Berge O-G, Garcia-Cabrera I, Hole K. Response latencies in the tail-flick test depend upon tail skin temperature. Neurosci Lett 1988; 86: 284–288
  • Hole K, Berge O-G, Tjolsen A, Eide PK, Garcia-Cabrera I, Lund A, Rosland JH. The tail-flick test needs to be improved. Pain 1990; 43: 391–392
  • Dirig DM, Salami A, Rathbun ML, Ozaki GT, Yaksh TL. Characterization of variable defining hindpaw withdrawal latency evoked by radiant thermal stimuli. J Neurosci Methods 1997; 76: 183–191
  • Lee JH, Stitzer ML. A novel radiant heat test for assessing pain threshold in human subjects: Measurement stability. Behav Res Meth Instrument Comput 1995; 27: 41–45
  • Greenwald MK, Johanson C-E. Behavioral measurement of thermal pain sensitivity in humans: Effects of stimulus intensity and instructions. Exper Clin Psychopharm 2001; 9: 209–214
  • Wasner GL, Brock JA. Determinant of thermal pain thresholds in normal subjects. Clin Neurophysiol 2008; 119: 2389–2395
  • Bouchama A, Knochel JP. Heat stroke. N Engl J Med 2002; 346: 1978–1988
  • National Institute for Occupational Safety and Health. Criteria for a recommended standard – Occupational exposure to hot environments. Washington, D.C.: U.S. Government Printing Office, NIOSH: 1986, No. 72–10269
  • van den Berg BJ, Yerushalmy J. Studies on convulsive disorders in young children. Pediatr Res 1969; 3: 298–304
  • Nelson KB, Ellenburg JH. Prognosis in children with febrile seizures. Pediatrics 1978; 61: 720–727
  • Hauser WA. The prevalence and incidence of convulsive disorders in children. Epilepsia 1994; 35: S1–S6
  • Shinnar S, Glauser TA. Febrile seizures. J Child Neurol 2002; 17: S44–S52
  • van Landingham KE, Heinz ER, Cavazos JE, Lewis DV. Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Ann Neurol 1998; 43: 413–426
  • Rocca WA, Sharbrough FW, Hauser WA, Annegers JF, Schoenberg BS. Risk factors for complex partial seizures: A population-based case-control study. Ann Neurol 1987; 21: 22–31
  • Maher J, McLachlan RS. Febrile convulsions. Is seizure duration the most important predictor of temporal lobe epilepsy?. Brain 1995; 118: 1521–1528
  • Chen K, Baram TZ, Soltesz I. Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 1999; 5: 888–894
  • Chen K, Aradi I, Thon N, Eghbal-Ahmadi M, Baram TZ, Soltesz I. Persistent modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat Med 2001; 7: 331–337
  • Holtzman D, Oban K, Olson J. Hyperthermia-induced seizures in the rat pup: A model for febrile convulsions in children. Science 1981; 213: 1034–1036
  • McCaughran JA, Jr, Schechter N. Experimental febrile convulsions: Long-term effects of hyperthermia-induced convulsions in the developing rat. Epilepsia 1982; 23: 173–183
  • Baram TZ, Gerth A, Schultz L. Febrile seizures: An appropriate aged model suitable for long-term studies. Dev Brain Res 1997; 98: 265–270
  • Dube C, Chen K, Eghbal‐Ahmadi M, Brunson K, Soltesz I, Baram TZ. Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann Neurol 2000; 47: 336–344
  • Kornelsen RA, Boon F, Leung. LS, Cain DP. The effects of a single neonatally induced convulsion on spatial navigation, locomotor activity and convulsion susceptibility in the adult rat. Brain Res 1996; 706: 155–159
  • Shibasaki K, Suzukim M, Mizuno A, Tominaga M. Effects of body temperature on neural activity in the hippocampus: Regulation of resting membrane potentials by transient receptor potential vanilloid 4. J Neurosci 2007; 27: 1566–1575
  • Gibson HE, Edwards JG, Page RS, Van Hook MJ, Kauer JA. TRPV1channels mediate long-term depression at synapses on hippocampal interneurons. Neuron 2008; 57: 746–759
  • Mesquita AR, Tavares HB, Silva R, Sousa N. Febrile convulsions in developing rats induce a hyperanxious phenotype later in life. Epilepsy Behav 2006; 9: 401–406
  • Morris RGM, Garrud P, Rawlins JNP, O’Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature 1982; 297: 681–683
  • Werboff J, Havlena J. Febrile convulsions in infant rats, and later behavior. Science 1963; 142: 684–685
  • Nealis JG, Rosman NP, De Piero TJ, Ouellette EM. Neurologic sequelae of experimental febrile convulsions. Neurology 1978; 28: 246–250
  • Rogalska J, Caputa M, Wentowska K, Nowakowska A. Stress-induced behaviour in juvenile rats: Effects of neonatal asphyxia, body temperature and chelation of iron. Behav Brain Res 2004; 154: 321–329
  • Caputa M, Rogalska J, Wentowska K, Nowakowska A. Perinatal asphyxia, hyperthermia and hyperferremia as factors inducing behavioural disturbances in adulthood: A rat model. Behav Brain Res 2005; 163: 246–256
  • Ginsberg MD. Temperature influences on ischemic brain injury. In: C.Y. Hsu (ed.), Ischemic stroke: From basic mechanisms to new drug development. Monogr Clin Neurosci 1998; 16: 65–88
  • Reglodi D, Somogyvari-Vigh A, Maderdrut JL, Vigh S, Arimura A. Postischemic spontaneous hyperthermia and its effects in middle cerebral artery occlusion in the rat. Exp Neurol 2000; 163: 399–407
  • Dell’Anna ME, Calzolari S, Molinari M, Iuvome L, Calimici R. Neonatal anoxia induces transitory hyperactivity, permanent spatial memory deficits and CA1 cell density reduction in developing rats. Behav Brain Res 1991; 45: 125–134
  • Nyakas C, Buwalda B, Luiten PGM. Hypoxia and brain development. Prog Neurobiol 1996; 49: 1–51
  • Yager J, Towfighi J, Vannucci RC. Influence of mild hypothermia on hypoxic‐ischemic brain damage in the immature rat. Pediatr Res 1993; 34: 525–529
  • Colbourne F, Sutherland G, Corbett D. Postischemic hypothermia. A critical appraisal with implications for clinical treatment. Mol Neurobiol 1997; 14: 171–201
  • Corbett D, Hamilton M, Colbourne F. Persistent neuroprotection with prolonged postischemic hypothermia in adult rats subjected to transient middle cerebral artery occlusion. Exp Neurol 2000; 163: 200–206
  • Maier CM, Sun GH, Kunis D, Yenari MA, Steinberg GK. Delayed induction and long-term effects of mild hypothermia in a focal model of transient cerebral ischemia: Neurological outcome and infarct size. J Neurosurg 2001; 94: 90–96
  • Speiser Z, Korczyn AD, Teplitzky I, Gitter S. Hyperactivity in rats following postnatal anoxia. Behav Brain Res 1983; 7: 379–382
  • Sharma HS. Hyperthermia influences excitatory and inhibitory amino acid neurotransmitters in the central nervous system. An experimental study in the rat using behavioural, biochemical, pharmacological, and morphological approaches. J Neural Trans 2006; 113: 497–519
  • Sharma HS, Westman J, Cervos-Navarro J, Dey PK, Nyberg F. Opioid receptor antagonists attenuate heat stress-induced reduction in cerebral blood flow, increased blood-brain barrier permeability, vasogenic edema and cell changes in the rat. Ann NY Acad Sci 1997; 813: 559–571
  • Thompson SM, Masukawa LM, Prince DA. Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro. J Neurosci 1985; 5: 817–824
  • Liebregts MT, McLachlan RS, Leung LS. Hyperthermia induces age-dependent changes in rat hippocampal excitability. Ann Neurol 2002; 52: 318–326
  • Cain DP, Raithby A, Corcoran ME. Urethane anesthesia blocks the development and expression of kindled seizures. Life Sci 1989; 44: 1201–1206
  • Qu L, Liu X, Wu C, Leung LS. Hyperthermia decreases GABAergic synaptic transmission in hippocampal neurons of immature rats. Neurobiol Disease 2007; 27: 320–327
  • Al-Hayani A, Davies SN. Effect of cannabinoids on synaptic transmission in the rat hippocampal slice is temperature‐dependent. Eur J Pharmacol 2002; 442: 47–54
  • Binda F, Bossi E, Giovannardi S, Forlani G, Peres A. Temperature effects on the presteady-state and transport-associated currents of GABA cotransporter rGAT1. FEBS Lett 2002; 512: 303–307
  • Masino SA, Dunwiddie TV. Temperature-dependent modulation of excitatory transmission in hippocampal slices is mediated by extracellular adenosine. J Neurosci 1999; 19: 1932–1939
  • Qu L, Leung LS. Mechanisms of hyperthermia-induced depression of GABAergic synaptic transmission in the immature rat hippocampus. J Neurochem 2008; 106: 2158–2169
  • Capogna M, Gahwiler BH, Thompson SM. Presynaptic enhancement of inhibitory synaptic transmission by protein kinases A and C in the rat hippocampus in vitro. J Neurosci 1995; 15: 1249–1260
  • Chiles WD. Effects of elevated temperature on performance of a complex mental task. Ergonomics 1958; 2: 89–96
  • Bell CR, Provins KA, Hiorns RW. Visual and auditory vigilance during exposure to hot and humid conditions. Ergonomics 1964; 7: 279–288
  • Poulton EC, Kerslake MB. Initial stimulating effect of warmth upon perceptual efficiency. Aerospace Med 1965; 36: 29–32
  • Lovingood BW, Blyth CS, Peacock WH, Lindsay RB. Effects of d-amphetamine sulfate, caffeine and high temperature on human performance. Res Quart 1967; 38: 64–71
  • Colquhoun WP. Effects of raised ambient temperature and event rate on vigilance performance. Aerospace Med 1969; 40: 413–417
  • Colquhoun WP, Goldman RF. Vigilance under induced hyperthermia. Ergonomics 1972; 15: 621–632
  • Nunneley SA, Dowd PJ, Myhre LG, Stribley RF, McNee RC. Tracking-task performance during heat stress simulating cockpit conditions in high-performance aircraft. Ergonomics 1979; 22: 549–555
  • Kobrick JL, Fine BJ. Climate and human performance. The physical environment at work, DJ Oborne, MM Gruneberg. Wiley Press, Chichester 1983; 69–107
  • Enander AE. Effects of thermal stress on human performance. Scand J Work Environ Health 1989; 15(Suppl. 1)27–33
  • Enander AE, Hygge S. Thermal stress and human performance. Scand J Work Environ Health 1990; 16(Suppl. 1)44–50
  • Ramsey JD. Working safely in hot environments. Advances in industrial ergonomics and safety II, B Das. Taylor & Francis, London 1990; 889–896
  • Ramsey JD. Task performance in heat: A review. Ergonomics 1995; 38: 154–165
  • Grether WF. Human performance at elevated environmental temperatures. Aerospace Med 1973; 44: 747–755
  • Ramsey JD, Morrissey SJ. Isodecrement curves for task performance in hot environments. Appl Ergon 1978; 9: 66–72
  • Hancock PA. Heat stress impairment of mental performance: A revision of tolerance limits. Aviat Space Environ Med 1981; 52: 778–784
  • Hancock PA. Task categorizations and the limits of human performance in extreme heat. Aviat Space Environ Med 1982; 53: 778–784
  • Ramsey JD, Kwon G. Recommended alert limits for perceptual motor loss in hot environments. Int J Indust Ergon 1992; 9: 245–257
  • Hancock PA, Vasmatzidis I. Human occupational and performance limits under stress: The thermal environment as a prototypical example. Ergonomics 1998; 4: 1169–1191
  • Hancock PA, Vasmatzidis I. On the behavioral basis for stress exposure limits: The foundational case of thermal stress. The occupational ergonomics handbook, W Karwowski, WS Marras. CRC Press, Boca RatonFlorida 2000; 1707–1739
  • Amos D, Hansen R, Lau WM, Michalski JT. Physiological and cognitive performance of soldiers conducting routine patrol and reconnaissance operations in the tropics. Mil Med 2000; 165: 961–966
  • Cian C, Barraud PA, Melin B, Raphel C. Effects of fluid ingestion on cognitive function after heat stress or exercise induced dehydration. Int J Psychophysiol 2001; 42: 243–251
  • McMorris T, Swain J, Smith M, Corbett J, Delves S, Sale C, Harris RC, Potter J. Heat stress, plasma concentrations of adrenaline, noradrenaline, 5–hydroxytryptamine and cortisol, mood state and cognitive performance. Internat J Psychophysiol 2006; 61: 204–215
  • Wyon DP, Andersen I, Lundqvist GR. The effects of moderate heat stress on mental performance. Scand J Work Environ Health 1979; 5: 352–361
  • Kenney MJ, Fels RJ. Forebrain and brain stem neural circuits contribute to altered sympathetic responses to heating in senescent rats. J Appl Physiol 2003; 95: 1986–1993
  • Hancock PA. The effect of skill on performance under an environmental stressor. Aviat Space Environ Med 1986; 57: 59–64
  • Allan JR, Gibson TM. Separation of the effects of raised skin and core temperature on performance of a pursuit rotor task. Aviat Space Environ Med 1979; 50: 678–682
  • Allan JR, Gibson TM, Green RG. Effect of induced cyclic changes of deep body temperature on task performances. Aviat Space Environ Med 1979; 50: 585–589
  • Gibson TM, Allan JR. Effect on performance of cycling deep body temperature between 37.0 and 37.6°C. Aviat Space Environ Med 1979; 59: 935–938
  • Gibson TM, Allan JR, Lawson CJ, Green RG. Effect of induced cyclic changes of deep body temperature on performance of a flight simulator. Aviat Space Environ Med 1980; 51: 356–360
  • Pepler RD. Warmth and performance: An investigation in the tropics. Ergonomics 1958; 2: 63–88
  • Vasmatzidis I, Schlegel RE, Hancock PA. An investigation of heat stress effects on time‐sharing performance. Ergonomics 2002; 45: 218–239
  • Hancock PA, Vasmatzidis I. Effects of heat stress on cognitive performance: The current state of knowledge. Int J Hyperthermia 2003; 19: 355–372
  • Nybo L, Secher NH, Nielsen B. Inadequate heat release from the human brain during prolonged exercise with hyperthermia. J Physiol 2002; 545: 697–704
  • Hancock PA. Sustained attention under thermal stress. Psychol Bull 1986; 99: 263–281
  • Pilcher JJ, Nadler E, Busch C. Effects of hot and cold temperature exposure on performance: A meta-analytic review. Ergonomics 2002; 45: 682–698
  • Pud D, Sapir S. The effects of noxious heat, auditory stimulation, a cognitive task, and time on task on pain perception and performance accuracy in healthy volunteers: A new experimental model. Pain 2006; 120: 155–160
  • Bhalang K, Sigurdsson A, Slade GD, Maixner W. Association among four modalities of experimental pain in women. J Pain 2005; 6: 604–611
  • Edwards RR, Fillingrim RB. Self-reported pain sensitivity: Lack of correlation with pain threshold and tolerance. Eur J Pain 2007; 11: 594–598
  • Mündel T, Hooper PL, Bunn SJ, Jones DA. The effects of face cooling on the prolactin response and subjective comfort during moderate passive heating in humans. Exp Physiol 2006; 91: 1007–1014
  • Simmons SE, Saxby BK, McGlone FP, Jones DA. The effect of passive heating and head cooling on perception, cardiovascular function and cognitive performance in the heat. Eur J Appl Physiol 2008; 104: 271–280
  • Racinais S, Gaoua N, Grantham J. Hyperthermia impairs short-term memory and peripheral motor drive transmission. J Physiol 2008; 586: 4751–4762
  • Todd G, Butler JE, Taylor JL, Gandevia SC. Hyperthermia: A failure of the motor cortex and the muscle. J Physiol 2005; 563: 621–631
  • Dewhurst S, Riches PE, Nimmo MA, De Vito G. Temperature dependence of soleus H-reflex and M wave in young and older women. Eur J Appl Physiol 2005; 94: 491–499
  • Reilly JP. Applied bioelectricity: From electrical stimulation to electropathology. Springer, New York 1998
  • D’Andrea JA, Adair ER, John O, de Lorge JO. Behavioral and cognitive effects of microwave exposure. Bioelectromagnetics 2003, Suppl 6: S39–S62
  • Gandhi OP. Polarization and frequency effects on whole animal energy absorption of RF energy. Proc IEEE 1974; 62: 1171–1175
  • Mickley A, Cobb BL, Mason P, Farrell S. Disruption of a putative working memory task and selective expression of brain c-fos following microwave-induced hyperthermia. Physiol Behav 1994; 55: 1029–1038
  • Mickley A, Cobb BL, Mason P, Farrell S. Thermal tolerance reduces hyperthermia-induced disruption of working memory: A role for endogenous opiates?. Physiol Behav 1998; 63: 855–865
  • D’Andrea JA, Gandhi OP, Lords JL. Behavioral and thermal effects of microwave radiation at resonant and non-resonant wavelengths. Radio Sci 1977; 12: 251–256
  • de Lorge JO, Ezell CS. Observing responses of rats exposed to 1.28 and 5.62 GHz microwaves. Bioelectromagnetics 1980; 1: 183–198
  • Thomas JR, Schrot J, Banvard RA. Comparative effects of pulsed and continuous-wave 2.8 GHz microwaves on temporally defined behavior. Bioelectromagnetics 1982; 3: 227–235
  • de Lorge JD. The thermal basis for disruption of operant behavior by microwaves in three animal species. In: E.R. Adair (ed.), Microwaves and thermoregulation. New York: Academic Press: 1983, pp 379–399
  • de Lorge JO. Operant behavior and colonic temperature of rhesus monkeys, Macaca mulatta, exposed to microwaves at frequencies above and near whole body resonance. Bioelectromagnetics 1984; 5: 233–246
  • Lebovitz RM. Pulse modulated and continuous wave microwave radiation yield equivalent changes in operant behavior of rodents. Physiol Behav 1983; 30: 891–898
  • D’Andrea JA, Thomas A, Hatcher DJ. Rhesus monkey behavior during exposure to high-peak-power 5.62 GHz microwave pulses. Bioelectromagnetics 1994; 15: 63–176
  • Burr JG, Krupp JH. Real-time measurement of RFR energy distribution in the Macaca mulatta head. Bioelectromagnetics 1980; 1: 21–34
  • Stern SL. Behavioral effects of microwaves. Neurobehav Toxicol 1980; 2: 49–58
  • D’Andrea JA. Behavioral evaluation of microwave irradiation. Bioelectromagnetics 1999; 20: 64–74
  • Yamaguchi H, Tsurita G, Ueno S, Watanabe S, Wake K, Taki M, Nagawa H. 1439 mHz pulsed TDMA fields affect performance of rats in a T-maze task only when body temperature is elevated. Bioelectromagnetics 2003; 24: 223–230
  • Cobb BL, Jauchem JR, Adair ER. Radial arm maze performance of rats following repeated low level microwave radiation exposure. Bioelectromagnetics 2004; 25: 49–57
  • Xu Z-W, Hou B, Li Y-F, Gao Y, Su Z-T, Yang G-S, Zhao S-F, He F-C, Zhang C-G. Theophylline attenuates microwave-induced impairment of memory acquisition. Neurosci Lett 2007; 412: 129–133
  • Kumlin T, Iivonen H, Miettinen P, Juvonen A, van Groen T, Puranen L, Pitkäaho R, Juutilainen J, Tanila H. Mobile phone radiation and the developing brain: Behavioral and morphological effects in juvenile rats. Radiation Res 2007; 168: 471–479
  • Preece A, Iwi G, Davies-Smith A, Wesnes K, Butler S, Lim E, Varey A. Effect of a 915 MHz simulated mobile phone signal on cognitive function in man. Int J Radiat Biol 1999; 75: 447–456
  • Koivisto M, Krause C, Revonsuo A, Laine M, Hämäläinen H. The effects of electromagnetic field emitted by GSM phones on working memory. NeuroReport 2000; 11: 1641–1643
  • Koivisto M, Revonsuo A, Krause C, Haarala C, Sillanmäki L, Laine M, Hämäläinen H. Effects of 902 MHz electromagnetic field emitted by cellular telephones on response times in humans. NeuroReport 2000; 11: 413–415
  • Edelstyn N, Oldershaw A. The acute effects of exposure to the electromagnetic field emitted by mobile phones on human attention. NeuroReport 2001; 13: 119–121
  • Lee TMC, Ho SMY, Tsang LYH, Yang SYC, Li LSW, Chan CCH. Effect on human attention of exposure to the electromagnetic field emitted by mobile phones. NeuroReport 2001; 12: 729–731
  • Hamblin DL, Wood AW. Effects of mobil phone emissions on human brain activity and sleep variables. Int J Radiat Biol 2002; 78: 659–669
  • Krause CM, Sillanmäki L, Koivisto M, Häggqvist A, Saarela C, Revonsuo A, Laine M, Hämäläinen H. Effects of electromagnetic field emitted by cellular phones on the EEG during a memory task. NeuroReport 2000; 11: 761–764
  • Krause CM, Haarala C, Sillanmäki L, Koivisto M, Alanko K, Revonsuo A, Laine M, Hämäläinen H. Effects of electromagnetic field emitted by cellular phones on the EEG during an auditory memory task: A double blind replication study. Bioelectromagnetics 2004; 25: 33–40
  • Haarala C, Björnberg L, Ek M, Laine M, Revonsuo A, Koivisto M, Hämäläinen H. Effect of a 902 MHz electromagnetic field emitted by mobil phones on human cognitive function: A replication study. Bioelectromagnetics 2003; 24: 283–288
  • Haarala C, Ek M, Björnberg L, Laine M, Revonsuo A, Koivisto M, Hämäläinen H. 902 MHz mobile phone does not affect short term memory in humans. Bioelectromagnetics 2004; 25: 452–456
  • Eliyahu I, Luria R, Hareuveny R, Margaliot M, Meiran N, Shani G. Effects of radiofrequency radiation emitted by cellular telephones on the cognitive functions of humans. Bioelectromagnetics 2006; 27: 119–126
  • Luria R, Ilan Eliyahu I, Hareuveny R, Margaliot M, Meiran N. Cognitive effects of radiation emitted by cellular phones: The influence of exposure side and time. Bioelectromagnetics 2009; 30: 198–204
  • Wiholm C, Lowden A, Kuster N, Hillert L, Arnetz BB, Åkerstedt T, Moffat SD. Mobile phone exposure and spatial memory. Bioelectromagnetics 2009; 30: 59–65
  • Hutter H-P, Moshammer H, Wallner P, Kundi M. Subjective symptoms, sleeping problems, and cognitive performance in subjects living near mobile phone base stations. Occup. Environ. Med. 2006; 63: 307–313
  • Oftedal G, Straume A, Johnsson A, Stovner LJ. Mobile phone headache: A double blind, sham-controlled provocation study. Cephalalgia 2007; 27: 447–455
  • Abdel-Rassoul G, Abou El-Fateh O, Abou Salem M, Michael A, Farahat F, El-Batanouny M, Salem E. Neurobehavioral effects among inhabitants around mobile phone base stations. NeuroToxicology 2007; 28: 434–440
  • Duffy E. The concept of energy mobilization. Psych Rev 1951; 58: 30–40
  • Duffy E. The psychological significance of the concept ‘arousal’ or ‘activation’. Psych Rev 1957; 64: 621–632
  • Hebb DO. Drives and the C.N.S. (Conceptual Nervous System). Psych Rev 1955; 62: 243–254
  • Näätänen R. The inverted-U relationship between activation and performance: A critical review. Attention and performance IV, S Kornblum. Academic Press, New York 1973; 155–174
  • Pribram KH, McGuiness D. Arousal, activation and effort in the control of attention. Psych Rev 1975; 82: 116–149
  • Hancock PA. Arousal theory, stress and performance: Problems of incorporating energetic aspects of behavior onto human-machine systems function. In: Mark, L.S. Warm, J.S. Huston R.L. (eds.), Ergonomics and human factors: Recent research. New York: Springer-Verlag: 1987, pp 170–179
  • Hancock PA. Environmental stressors. Sustained attention in human performance, JS Warm. Wiley Press, New York 1984; 103–142
  • Hancock PA, Warm JS. A dynamic model of stress and sustained attention. Hum Fact 1989; 31: 519–537

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.