735
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Method to reduce non-specific tissue heating of small animals in solenoid coils

, , , , , , , & show all
Pages 106-120 | Received 10 May 2012, Accepted 03 Jan 2013, Published online: 13 Feb 2013

References

  • Ehrmann K, Saillen N, Vincent F, Stettler M, Jordan M, Wurm FM, et al. Microfabricated solenoids and Helmholtz coils for NMR spectroscopy of mammalian cells. Lab Chip 2007; 7: 373–380
  • Minard KR, Wind RA. Solenoidal microcoil design – Part I: Optimizing RF homogeneity and coil dimensions. Concepts Magn Reson 2000; 13: 128–142
  • McCann C, Sherar MD. Development of a novel loosely wound helical coil for interstitial radiofrequency thermal therapy. Phys Med Biol 2006; 51: 3835–3850
  • Ellinger DC, Chute FS, Vermeulen FE. Evaluation of a semi-cylindrical solenoid as an applicator for radio-frequency hyperthermia. IEEE Trans Biomed Eng 1989; 36: 987–994
  • Tasci TO, Vargel I, Arat A, Guzel E, Korkusuz P, Atalar E. Focused RF hyperthermia using magnetic fluids. Med Phys 2009; 36: 1906–1912
  • Jordan A, Wust P, Scholz R, Faehling H, Krause J, Felix R. Magnetic fluid hyperthermia (MFH). Scientific and Clinical Applications of Magnetic Carriers, U Hafeli, M Zborowski, W Schutt. Plenum Press, New York 1997; 569–595
  • Stauffer PR, Sneed PK, Hashemi H, Phillips TL. Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants. IEEE Trans Biomed Eng 1994; 41: 17–28
  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mat 2002; 252: 370–374
  • Bordelon D, Cornejo C, Gruettner C, DeWeese TL, Ivkov R. Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with a wide ranging and high amplitude alternating magnetic field. J Appl Phys 2011; 109: 124904
  • Kashevsky BE, Kashevsky SB, Prokhorov IV. Dynamic magnetic hysteresis in a liquid suspension of acicular maghemite particles. Particuology 2009; 7: 451–458
  • Ellinger DC, Vermeulen FE. Evaluation of a semi-cylindrical solenoid as an applicator for radio-frequency hyperthermia. IEEE Trans Biomed Eng 1989; 36: 987–994
  • Lin JC, Bernardi P. Computational methods for predicting field intensity and temperature change. Bioengineering and biophysical aspects of electromagnetic fields3rd, FS Barnes, B Greenebaum. CRC Press, Boca Raton 2007; 293–380
  • Liu F, Zhao H, Crozier S. On the induced electric field gradients in the human body for magnetic stimulation by gradient coils in MRI. IEEE Trans Biomed Eng 2003; 50: 804–815
  • Wang Q, Deng ZS, Liu J. Theoretical evaluations of magnetic nanoparticle-enhanced heating on tumor embedded with large blood vessels during hyperthermia. J Nanopart Res 2012; 14: 974–984
  • Szasz A, Szasz O, Szasz N. Physical background and technical realizations of hyperthermia. Hyperthermia in Cancer Treatment: A primer, GF Baronzio, ED Hager. Landes Bioscience and Springer, New York 2006; 27–52
  • Adair ER, Black DR. Thermoregulatory responses to RF energy absorption. Bioelectromagnetics 2003; 6: S17–38
  • Black DR. Thermoregulation in the presence of radio frequency fields. Biological and Medical Aspects of Electromagnetic Fields3rd, FS Barnes, B Greenebaum. CRC Press, Boca Raton, FL 2006; 215–226
  • Cerchiari U. Hyperthermia, physics, vector potential, electromagnetic heating: A primer. Hyperthermia in Cancer Treatment: A primer, GF Baronzio, ED Hager. Landes Bioscience and Springer, New York 2006; 3–18
  • Polk C. Introduction. Biological and Medical Aspects of Electromagnetic Fields3rd, FS Barnes, B Greenebaum. CRC Press, Boca Raton, FL 2006; xiii–xxvi
  • Atkinson WJ, Brezovich IA, Chakraborty DP. Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng 1984; 31: 70–75
  • Brezovich IA. Low frequency hyperthermia: Capacitive and ferromagnetic thermoseed methods. Biological, Physical, and Clinical Aspects of Hyperthermia. Medical Physics Monograph 16, B Paliwal, FW Hetzel, MW Dewhirst. American Institute of Physics, Ann Arbor, MI 1988; 82–111
  • Dewhirst MW, Jones E, Samulski T, Vujaskovic Z, Li C, Prosnitz L. Hyperthermia. Cancer Medicine6th, DW Kufe, RE Pollock, RE Weichselbaum, RC Bast, TS Gansler. BC Decker, Hamilton, Ontario 2003; 623–636
  • Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 2003; 19: 267–294
  • Roti Roti JL. Heat-induced alterations of nuclear protein associations and their effects on DNA repair and replication. Int J Hyperthermia 2002; 23: 3–15
  • Horsman MR, Overgarrd J. Hyperthermia: A potent enhancer of radiotherapy. Clin Oncol 2007; 19: 418–426
  • Hunt CR, Pandita RK, Laszlo A, Higashikubo R, Agarwal M, Kitamura T, et al. Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status. Cancer Res 2007; 67: 3010–3017
  • van der Zee J. Heating the patient: A promising approach?. Ann Oncol 2002; 13: 1173–1184
  • Candeo A, Dughiero F. Numerical FEM models for the planning of magnetic induction hyperthermia treatments with nanoparticles. IEEE Trans Magn 2009; 45: 1658–1661
  • Wust P, Gneveckow U, Johannsen M, Böhmer D, Henkel T, Kahmann F, et al. Magnetic nanoparticles for interstitial thermotherapy – Feasibility, tolerance and achieved temperatures. Int J Hyperthermia 2006; 22: 673–685
  • DeNardo SJ, DeNardo GL, Natarajan A, Miers LA, Foreman AR, Gruettner C, et al. Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF-induced thermoablative therapy for human breast cancer in mice. J Nuc Med 2007; 48: 437–444
  • Dennis CL, Jackson AJ, Borchers JA, Hoopes PJ, Strawbridge R, Foreman AR, et al. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology 2009; 20: 395103
  • Trakic A, Liu F, Crozier S. Transient temperature rise in a mouse due to low-frequency regional hyperthermia. Phys Med Biol 2006; 51: 1673–1691
  • Ivkov R, DeNardo SJ, Daum W, Foreman AR, Goldstein RC, Nemkov VS, DeNardo GL. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Clin Cancer Res 2005; 11: S7093–7103
  • Bordelon D, Goldstein R, Nemkov V, Kumar A, Jackowski J, DeWeese TL, Ivkov R. Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications. IEEE Trans Magn 2012; 48: 47–52
  • Ulrich J. Comparison of different techniques for the treatment of lossy dielectric/magnetic bodies within the method of moments formulations. AEU Int J Electron Commun 2000; 54: 163–173
  • Harrington RF. Field Computation by Moment Methods. IEEE Press, New York 1993
  • Grover FW. Inductance Calculations. Dover, New York 1973
  • Solazzo SA, Liu Z, Lobo SM, Ahmed M, Hines-Peralta AU, Lenkinski RE, et al. Radiofrequency ablation: Importance of background tissue electrical conductivity – An agar phantom and computer modeling study. Radiology 2005; 236: 495–502
  • Jordan A, Scholz R, Wust P, Fähling H, Krause J, Wlodarczyk W, et al. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperthermia 1997; 13: 587–605
  • Dutz S, Kettering M, Hilger I, Müller R, Zeisberger M. Magnetic multicore nanoparticles for hyperthermia – Influence of particle immobilization in tumour tissue on magnetic properties. Nanotechnology 2011; 22: 265102
  • Fortin JP, Gazeau F, Wilhelm C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur Biophys J 2008; 37: 223–228
  • Park B, Neuberger T, Webb AG, Bigler DC, Collins CM. Faraday shields within a solenoidal coil to reduce sample heating: Numerical comparison of designs and experimental verification. J Magn Reson 2010; 202: 72–77
  • Kaatze U. Complex permittivity of water as a function of frequency and temperature. J Chem Eng Data 1989; 34: 371–374

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.