2,158
Views
48
CrossRef citations to date
0
Altmetric
Review Articles

Protein interactomes of three stress inducible small heat shock proteins: HspB1, HspB5 and HspB8

&
Pages 409-422 | Received 26 Feb 2013, Accepted 02 Apr 2013, Published online: 22 May 2013

References

  • Kappe G, Franck E, Verschuure P, Boelens WC, Leunissen JA, de Jong WW. The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones 2003;8:53–61
  • Ingolia TD, Craig EA. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci USA 1982;79:2360–4
  • de Jong W, Leunissen J, Voorter C. Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol 1993;10:103–26
  • Arrigo A-P, Landry J. Expression and function of the low-molecular-weight heat shock proteins. In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1994. pp 335–73
  • Theriault JR, Lambert H, Chavez-Zobel AT, Charest G, Lavigne P, Landry J. Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. J Biol Chem 2004;279:23463–71
  • Takemoto L, Emmons T, Horwitz J. The C-terminal region of a-crystallin: Involvement in protection against heat-induced denaturation. Biochem J 1993;294:435–8
  • Pasta SY, Raman B, Ramakrishna T, Rao Ch M. The IXI/V motif in the C-terminal extension of alpha-crystallins: Alternative interactions and oligomeric assemblies. Mol Vis 2004;10:655–62
  • Sudnitsyna MV, Mymrikov EV, Seit-Nebi AS, Gusev NB. The role of intrinsically disordered regions in the structure and functioning of small heat shock proteins. Curr Protein Pept Sci 2012;13:76–85
  • Horwitz J, Huang Q-L, Ding L-L. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 1992;89:10449–53
  • Arrigo A-P, Simon S, Gibert B, Kretz-Remy C, Nivon M, Czekalla A, et al. Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets. FEBS Lett 2007;581:3665–74
  • Carra S, Seguin SJ, Landry J. HspB8 and Bag3: A new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 2008;4:237–9
  • Yang Z, Lu Y, Liu J, Wang Y, Zhao X. The chaperone-like activity of rat HspB8/Hsp22 and dynamic molecular transition related to oligomeric architectures in vitro. Protein Pept Lett 2012;19:353–9
  • Seit-Nebi AS, Gusev NB. Versatility of the small heat shock protein HSPB6 (Hsp20). Cell Stress Chaperones 2010;15(3):233–6
  • Vos MJ, Zijlstra MP, Kanon B, van Waarde-Verhagen MA, Brunt ER, Oosterveld-Hut HM, et al. HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet 2010;19:4677–93
  • Ke L, Meijering RA, Hoogstra-Berends F, Mackovicova K, Vos MJ, Van Gelder IC, et al. HSPB1, HSPB6, HSPB7 and HSPB8 protect against RhoA GTPase-induced remodeling in tachypaced atrial myocytes. PLoS One 2011;6:e20395
  • Jakob U, Gaestel M, Engels K, Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem 1993;268:1517–20
  • Ganea E. Chaperone-like activity of alpha-crystallin and other small heat shock proteins. Curr Protein Pept Sci 2001;2:205–25
  • Boelens WC, Croes Y, de Jong WW. Interaction between alphaB-crystallin and the human 20S proteasomal subunit C8/alpha7. Biochim Biophys Acta 2001;1544:311–19
  • den Engelsman J, Keijsers V, de Jong WW, Boelens WC. The small heat-shock protein alpha B-crystallin promotes FBX4-dependent ubiquitination. J Biol Chem 2003;278:4699–704
  • Carra S, Sivilotti M, Chavez Zobel AT, Lambert H, Landry J. HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Hum Mol Genet 2005;14:1659–69
  • Parcellier A, Brunet M, Schmitt E, Col E, Didelot C, Hammann A, et al. HSP27 favors ubiquitination and proteasomal degradation of p27Kip1 and helps S-phase re-entry in stressed cells. FASEB J 2006;20:1179–81
  • Bellyei S, Szigeti A, Pozsgai E, Boronkai A, Gomori E, Hocsak E, et al. Preventing apoptotic cell death by a novel small heat shock protein. Eur J Cell Biol 2007;86:161–71
  • Barbash O, Lin DI, Diehl JA. SCF Fbx4/alphaB-crystallin cyclin D1 ubiquitin ligase: A license to destroy. Cell Div 2007;2:2
  • Carra S. The stress-inducible HspB8-Bag3 complex induces the eIF2alpha kinase pathway: Implications for protein quality control and viral factory degradation. Autophagy 2009;5:428–9
  • Markossian KA, Yudin IK, Kurganov BI. Mechanism of suppression of protein aggregation by alpha-crystallin. Int J Mol Sci 2009;10:1314–45
  • Arrigo A-P, Suhan JP, Welch WJ. Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 1988;8:5059–71
  • Paul C, Simon S, Gibert B, Virot S, Manero F, Arrigo AP. Dynamic processes that reflect anti-apoptotic strategies set up by HspB1 (Hsp27). Exp Cell Res 2010;316:1535–52
  • Arrigo A-P. Structure-functions of HspB1 (Hsp27). Methods Mol Biol 2011;787:105–19
  • Bhat SP, Nagineni CN. AlphaB subunit of lens-specific protein a-cristallin is present in other ocular and non-ocular tissues. Bioch Biophys Res Commun 1989;158:319–25
  • Srinivasan A, Nagineni C, Bhat S. alpha A-crystallin is expressed in non-ocular tissues. J Biol Chem 1992;267:23337–41
  • Mymrikov EV, Seit-Nebi AS, Gusev NB. Large potentials of small heat shock proteins. Physiol Rev 2011;91:1123–59
  • Arrigo A-P. Anti-apoptotic, tumorigenic and metastatic potential of Hsp27 (HspB1) and alphaB-crystallin (HspB5): Emerging targets for the development of new anti-cancer therapeutic strategies. In: Calderwood S, Sherman M, Ciocca D, eds. Heat Shock Proteins in Cancer. New York: Springer-Verlag, 2007, pp. 73--92
  • Aloy MT, Hadchity E, Bionda C, Diaz-Latoud C, Claude L, Rousson R, et al. Protective role of Hsp27 protein against gamma radiation-induced apoptosis and radiosensitization effects of Hsp27 gene silencing in different human tumor cells. Int J Radiat Oncol Biol Phys 2008;70:543–53
  • Arrigo A-P, Simon S. Beneficial and deleterious, the dual role of small stress proteins in human diseases: implications for therapeutic strategies. In: Simon S, Arrigo A-P, eds. Small Stress Proteins and Human Diseases. New York: Nova Sciences, 2010, pp. 457--76
  • Gibert B, Eckel B, Gonin V, Goldschneider D, Fombonne J, Deux B, et al. Targeting heat shock protein 27 (HspB1) interferes with bone metastasis and tumour formation in vivo. Br J Cancer 2012;107:63–70
  • Arrigo A-P, Gibert B. HspB1 dynamic phospho-oligomeric structure dependent interactome as cancer therapeutic target. Curr Mol Med 2012;12:1151–63
  • Arrigo A-P. Pathology-dependent effects linked to small heat shock proteins expression. Scientifica 2012;2012:Article ID 185641. doi.org/10.6064/2012/185641
  • Ciocca DR, Arrigo A-P, Calderwood SK. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: An update. Arch Toxicol 2013;87:19–48
  • Arrigo A-P. In search of the molecular mechanism by which small stress proteins counteract apoptosis during cellular differentiation. J Cell Biochem 2005;94:241–6
  • Wilhelmus MM, Boelens WC, Otte-Holler I, Kamps B, Kusters B, Maat-Schieman ML, et al. Small heat shock protein HspB8: Its distribution in Alzheimer’s disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity. Acta Neuropathol 2006;111:139–49
  • Sun X, Fontaine JM, Hoppe AD, Carra S, DeGuzman C, Martin JL, et al. Abnormal interaction of motor neuropathy-associated mutant HspB8 (Hsp22) forms with the RNA helicase Ddx20 (gemin3). Cell Stress Chaperones 2010;15:567–82
  • Vicart P, Caron A, Guicheney P, Li Z, Prevost MC, Faure A, et al. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 1998;20:92–5
  • Arrigo A-P, Simon S. Expression and functions of heat shock proteins in the normal and pathological Mammalian eye. Curr Mol Med 2010;10:776–93
  • Gibert B, Eckel B, Fasquelle L, Moulin M, Bouhallier F, Gonin V, et al. Knock down of heat shock protein 27 (HspB1) induces degradation of several putative client proteins. PLoS One 2012;7:e29719
  • Echeverria PC, Bernthaler A, Dupuis P, Mayer B, Picard D. An interaction network predicted from public data as a discovery tool: Application to the Hsp90 molecular chaperone machine. PLoS One 2011;6:e26044
  • Zantema A, Jong ED, Lardenoije R, Eb AJVD. The expression of heat shock protein hsp27 and a complexed 22-kiloDalton protein is inversely correlated with oncogenicity of adenovirus transformed cells. J Virol 1989;63:3368–75
  • Groenen P, Merck K, de Jong W, Bloemendal H. Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology. Eur J Biochem 1994;225:1–19
  • Fu L, Liang JJ. Enhanced stability of alpha B-crystallin in the presence of small heat shock protein Hsp27. Biochem Biophys Res Commun 2003;302:710–14
  • Fontaine JM, Sun X, Benndorf R, Welsh MJ. Interactions of Hsp22 (HspB8) with Hsp20, alphaB-crystallin, and HspB3. Biochem Biophys Res Commun 2005;337:1006–11
  • Sreelakshmi Y, Sharma KK. The interaction between alphaA- and alphaB-crystallin is sequence-specific. Mol Vis 2006;12:581–7
  • Srinivas PN, Reddy PY, Reddy GB. Significance of alpha-crystallin heteropolymer with a 3:1 alphaA/alphaB ratio: Chaperone-like activity, structure and hydrophobicity. Biochem J 2008;414:453–60
  • Skouri-Panet F, Michiel M, Ferard C, Duprat E, Finet S. Structural and functional specificity of small heat shock protein HspB1 and HspB4, two cellular partners of HspB5: Role of the in vitro hetero-complex formation in chaperone activity. Biochimie 2012;94:975–84
  • Mymrikov EV, Seit-Nebi AS, Gusev NB. Heterooligomeric complexes of human small heat shock proteins. Cell Stress Chaperones 2012;17:157–69
  • Arrigo A-P, Welch W. Characterization and purification of the small 28,000-Dalton mammalian heat shock protein. J Biol Chem 1987;262:15359–69
  • Franklin TB, Krueger-Naug AM, Clarke DB, Arrigo AP, Currie RW. The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int J Hyperthermia 2005;21:379–92
  • Evgrafov OV, Mersiyanova I, Irobi J, Van Den Bosch L, Dierick I, Leung CL, et al. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet 2004;36:602–6
  • Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 1994;78:1027–37
  • Blagosklonny MV. Hsp-90-associated oncoproteins: Multiple targets of geldanamycin and its analogs. Leukemia 2002;16:455–62
  • Bukach OV, Glukhova AE, Seit-Nebi AS, Gusev NB. Heterooligomeric complexes formed by human small heat shock proteins HspB1 (Hsp27) and HspB6 (Hsp20). Biochim Biophys Acta 2009;1794:486–95
  • Rothbard JB, Kurnellas MP, Brownell S, Adams CM, Su L, Axtell RC, et al. Therapeutic effects of systemic administration of chaperone alphaB-crystallin associated with binding proinflammatory plasma proteins. J Biol Chem 2012;287:9708–21
  • Clark JI, Muchowski PJ. Small heat-shock proteins and their potential role in human disease. Curr Opin Struct Biol 2000;10:52–9
  • Chen P, Ji W, Liu FY, Tang HZ, Fu S, Zhang X, et al. Alpha-crystallins and tumorigenesis. Curr Mol Med 2012;12:1164–73
  • Saha S, Das KP. Relationship between chaperone activity and oligomeric size of recombinant human alphaA- and alphaB-crystallin: A tryptic digestion study. Proteins 2004;57:610–17
  • Ghosh JG, Houck SA, Clark JI. Interactive sequences in the molecular chaperone, human alphaB crystallin modulate the fibrillation of amyloidogenic proteins. Int J Biochem Cell Biol 2008;40:954–67
  • Kappe G, Verschuure P, Philipsen RL, Staalduinen AA, Van de Boogaart P, Boelens WC, et al. Characterization of two novel human small heat shock proteins: Protein kinase-related HspB8 and testis-specific HspB9. Biochim Biophys Acta 2001;1520:1–6
  • Badri KR, Modem S, Gerard HC, Khan I, Bagchi M, Hudson AP, et al. Regulation of Sam68 activity by small heat shock protein 22. J Cell Biochem 2006;99:1353–62
  • Roelofs MF, Boelens WC, Joosten LA, Abdollahi-Roodsaz S, Geurts J, Wunderink LU, et al. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J Immunol 2006;176:7021–7
  • Irobi J, Van Impe K, Seeman P, Jordanova A, Dierick I, Verpoorten N, et al. Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet 2004;36:597–601
  • Carra S, Brunsting JF, Lambert H, Landry J, Kampinga HH. HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2{alpha} phosphorylation. J Biol Chem 2009;284:5523–32
  • Crippa V, Sau D, Rusmini P, Boncoraglio A, Onesto E, Bolzoni E, et al. The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet 2010;19:3440–56
  • Fuchs M, Poirier DJ, Seguin SJ, Lambert H, Carra S, Charette SJ, et al. Identification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction. Biochem J 2010;425:245–55
  • Nivon M, Abou-Samra M, Richet E, Guyot B, Arrigo A-P, Kretz-Remy C. NF-kappaB regulates protein quality control after heat stress through modulation of the BAG3-HspB8 complex. J Cell Sci 2012;125:1141–51
  • Kato K, Shinohara H, Goto S, Inaguma Y, Morishita R, Asano T. Copurification of small heat shock protein with alphaB crystallin from human skeletal muscle. J Biol Chem 1992;267:7718–25
  • Sun X, Fontaine JM, Rest JS, Shelden EA, Welsh MJ, Benndorf R. Interaction of human Hsp22 (HspB8) with other small heat shock proteins. J Biol Chem 2004;279:2394–402
  • Shemetov AA, Seit-Nebi AS, Gusev NB. Phosphorylation of human small heat shock protein HspB8 (Hsp22) by ERK1 protein kinase. Mol Cell Biochem 2011;355:47–55
  • Zantema A, Vries MV-D, Maasdam D, Bol S, Eb Avd. Heat shock protein 27 and alphaB-cristallin can form a complex, which dissociates by heat shock. J Biol Chem 1992;267:12936–41
  • Diaz-Latoud C, Buache E, Javouhey E, Arrigo A-P. Substitution of the unique cysteine residue of murine hsp25 interferes with the protective activity of this stress protein through inhibition of dimer formation. Antioxid Redox Signal 2005;7:436–45
  • Gibert B, Hadchity E, Czekalla A, Aloy MT, Colas P, Rodriguez-Lafrasse C, et al. Inhibition of heat shock protein 27 (HspB1) tumorigenic functions by peptide aptamers. Oncogene 2011;34:3672–81
  • Heinrich JC, Tuukkanen A, Schroeder M, Fahrig T, Fahrig R. RP101 (brivudine) binds to heat shock protein Hsp27 (HspB1) and enhances survival in animals and pancreatic cancer patients. J Cancer Res Clin Oncol 2011;137:1349–61
  • Gibert B, Simon S, Dimitrova V, Diaz-Latoud C, Arrigo A-P. Peptide Aptamers – Tools to negatively or positively modulate HspB1(27) function. Phil Trans Royal Soc B 2013;368:20120075
  • Dall’Era MA, Oudes A, Martin DB, Liu AY. Hsp27 and Hsp70 interact with CD10 in C4-2 prostate cancer cells. Prostate 2007;67:714–21
  • Al-Madhoun AS, Chen YX, Haidari L, Rayner K, Gerthoffer W, McBride H, et al. The interaction and cellular localization of HSP27 and ERbeta are modulated by 17beta-estradiol and HSP27 phosphorylation. Mol Cell Endocrinol 2007;270:33–42
  • Zoubeidi A, Zardan A, Beraldi E, Fazli L, Sowery R, Rennie P, et al. Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res 2007;67:10455–65
  • Kang SH, Kang KW, Kim KH, Kwon B, Kim SK, Lee HY, et al. Upregulated Hsp27 in human breast cancer cells reduces Herceptin susceptibility by increasing Her2 protein stability. BMC Cancer 2008;8:286
  • Wu Y, Liu J, Zhang Z, Huang H, Shen J, Zhang S, et al. Hsp27 regulates IL-1 stimulated IKK activation through interacting with TRAF6 and affecting its ubiquitination. Cell Signal 2009;21:143–50
  • Charette SJ, Landry J. The interaction of Hsp27 with DAXX identifies a potential regulatory role of Hsp27 in Fas-induced apoptosis. Ann NY Acad Sci 2000;926:126–31
  • Lee HJ, Lee YS. Repeated-dose toxicity of Hsp27-binding heptapeptide in mice. Drug Chem Toxicol 2010;33:284–90
  • Patil SB, Pawar MD, Bitar KN. Direct association and translocation of PKC-alpha with calponin. Am J Physiol Gastrointest Liver Physiol 2004;286:G954–63
  • Wu R, Kausar H, Johnson P, Montoya-Durango DE, Merchant M, Rane MJ. Hsp27 regulates Akt activation and polymorphonuclear leukocyte apoptosis by scaffolding MK2 to Akt signal complex. J Biol Chem 2007;282:21598–608
  • Chebotareva NA, Makeeva VF, Bazhina SG, Eronina TB, Gusev NB, Kurganov BI. Interaction of Hsp27 with native phosphorylase kinase under crowding conditions. Macromol Biosci 2010;10:783–9
  • Zoubeidi A, Zardan A, Wiedmann RM, Locke J, Beraldi E, Fazli L, et al. Hsp27 promotes insulin-like growth factor-I survival signaling in prostate cancer via p90Rsk-dependent phosphorylation and inactivation of BAD. Cancer Res 2010;70:2307–17
  • Cayado-Gutierrez N, Moncalero VL, Rosales EM, Beron W, Salvatierra EE, Alvarez-Olmedo D, et al. Downregulation of Hsp27 (HspB1) in MCF-7 human breast cancer cells induces upregulation of PTEN. Cell Stress Chaperones 2013;18:243–9
  • Rocchi P, Beraldi E, Ettinger S, Fazli L, Vessella RL, Nelson C, et al. Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res 2005;65:11083–93
  • Brunet Simioni M, De Thonel A, Hammann A, Joly AL, Bossis G, Fourmaux E, et al. Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity. Oncogene 2009;28:3332–44
  • de Thonel A, Vandekerckhove J, Lanneau D, Selvakumar S, Courtois G, Hazoume A, et al. Hsp27 controls GATA-1 protein level during erythroid cell differentiation. Blood 2010;116:85–96
  • Wettstein G, Bellaye PS, Kolb M, Hammann A, Crestani B, Soler P, et al. Inhibition of Hsp27 blocks fibrosis development and EMT features by promoting Snail degradation. FASEB J 2013;27:1549–60
  • Cuesta R, Laroia G, Schneider RJ. Chaperone Hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes Dev 2000;14:1460–70
  • Andrieu C, Taieb D, Baylot V, Ettinger S, Soubeyran P, De-Thonel A, et al. Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E. Oncogene 2010;29:1883–96
  • Sinsimer KS, Gratacos FM, Knapinska AM, Lu J, Krause CD, Wierzbowski AV, et al. Chaperone Hsp27, a novel subunit of AUF1 protein complexes, functions in AU-rich element-mediated mRNA decay. Mol Cell Biol 2008;28:5223–37
  • Knapinska AM, Gratacos FM, Krause CD, Hernandez K, Jensen AG, Bradley JJ, et al. Chaperone Hsp27 modulates AUF1 proteolysis and AU-rich element-mediated mRNA degradation. Mol Cell Biol 2011;31:1419–31
  • Mounier N, Arrigo A-P. Actin cytoskeleton and small heat shock proteins: How do they interact? Cell Stress Chaperones 2002;7:167–76
  • Hino M, Kurogi K, Okubo MA, Murata-Hori M, Hosoya H. Small heat shock protein 27 (Hsp27) associates with tubulin/microtubules in HeLa cells. Biochem Biophys Res Commun 2000;271:164–9
  • Perng MD, Cairns L, van den IP, Prescott A, Hutcheson AM, Quinlan RA. Intermediate filament interactions can be altered by Hsp27 and alphaB-crystallin. J Cell Sci 1999;112:2099–112
  • Bjorkdahl C, Sjogren MJ, Zhou X, Concha H, Avila J, Winblad B, et al. Small heat shock proteins Hsp27 or alphaB-crystallin and the protein components of neurofibrillary tangles: Tau and neurofilaments. J Neurosci Res 2008;86:1343–52
  • Arany I, Clark JS, Reed DK, Ember I, Juncos LA. Cisplatin enhances interaction between p66Shc and HSP27: Its role in reorganization of the actin cytoskeleton in renal proximal tubule cells. Anticancer Res 2012;32:4759–63
  • Fanelli MA, Montt-Guevara M, Diblasi AM, Gago FE, Tello O, Cuello-Carrion FD, et al. P-cadherin and beta-catenin are useful prognostic markers in breast cancer patients: Beta-catenin interacts with heat shock protein Hsp27. Cell Stress Chaperones 2008;13:207–20
  • Rosenbaum EE, Brehm KS, Vasiljevic E, Liu CH, Hardie RC, Colley NJ. XPORT-dependent transport of TRP and rhodopsin. Neuron 2011;72:602–15
  • Sun Y, Zhou M, Fu D, Xu B, Fang T, Ma Y, et al. Ubiquitination of heat shock protein 27 is mediated by its interaction with SMAD ubiquitination regulatory factor 2 in A549 cells. Exp Lung Res 2011;37:568–73
  • Parcellier A, Schmitt E, Gurbuxani S, Seigneurin-Berny D, Pance A, Chantome A, et al. Hsp27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol Cell Biol 2003;23:5790–802
  • O’Callaghan-Sunol C, Gabai VL, Sherman MY. Hsp27 modulates p53 signaling and suppresses cellular senescence. Cancer Res 2007;67:11779–88
  • Zhu Y, Tassi L, Lane W, Mendelsohn ME. Specific binding of the transglutaminase, platelet factor XIII, to HSP27. J Biol Chem 1994;269:22379–84
  • Cosentino C, Grieco D, Costanzo V. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J 2011;30:546–55
  • Beresford PJ, Jaju M, Friedman RS, Yoon MJ, Lieberman J. A role for heat shock protein 27 in CTL-mediated cell death. J Immunol 1998;161:161–7
  • Pandey P, Farber R, Nakazawa A, Kumar S, Bharti A, Nalin C, et al. Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 2000;19:1975–81
  • Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2000;2:645–52
  • Hayashi N, Peacock JW, Beraldi E, Zoubeidi A, Gleave ME, Ong CJ. Hsp27 silencing coordinately inhibits proliferation and promotes Fas-induced apoptosis by regulating the PEA-15 molecular switch. Cell Death Differ 2012;19:990–1002
  • Choi YW, Tan YJ, Lim SG, Hong W, Goh PY. Proteomic approach identifies Hsp27 as an interacting partner of the hepatitis C virus NS5A protein. Biochem Biophys Res Commun 2004;318:514–19
  • Bruinsma IB, Bruggink KA, Kinast K, Versleijen AA, Segers-Nolten IM, Subramaniam V, et al. Inhibition of alpha-synuclein aggregation by small heat shock proteins. Proteins 2011;79:2956–67
  • Nemes Z, Devreese B, Steinert PM, Van Beeumen J, Fesus L. Cross-linking of ubiquitin, Hsp27, Parkin, and alpha-synuclein by gamma-glutamyl-epsilon-lysine bonds in Alzheimer’s neurofibrillary tangles. FASEB J 2004;18:1135–7
  • Robertson AL, Headey SJ, Saunders HM, Ecroyd H, Scanlon MJ, Carver JA, et al. Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation. Proc Natl Acad Sci USA 2010;107:10424–9
  • Yerbury JJ, Gower D, Vanags L, Roberts K, Lee JA, Ecroyd H. The small heat shock proteins alphaB-crystallin and Hsp27 suppress SOD1 aggregation in vitro. Cell Stress Chaperones 2013;18:251–7
  • Ackerley S, James PA, Kalli A, French S, Davies KE, Talbot K. A mutation in the small heat shock protein HSPB1 leading to distal hereditary motor neuronopathy disrupts neurofilament assembly and the axonal transport of specific cellular cargoes. Hum Mol Genet 2006;15:347–54
  • Shimura H, Miura-Shimura Y, Kosik KS. Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J Biol Chem 2004;279:17957–62
  • Ehrnsperger M, Graber S, Gaestel M, Buchner J. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 1997;16:221–9
  • Jia Y, Ransom RF, Shibanuma M, Liu C, Welsh MJ, Smoyer WE. Identification and characterization of hic-5/ARA55 as an hsp27 binding protein. J Biol Chem 2001;276:39911–18
  • Liu C, Gilmont RR, Benndorf R, Welsh MJ. Identification and characterization of a novel protein from Sertoli cells, PASS1, that associates with mammalian small stress protein Hsp27. J Biol Chem 2000;275:18724–31
  • Havasi A, Li Z, Wang Z, Martin JL, Botla V, Ruchalski K, et al. Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem 2008;283:12305–13
  • Preville X, Salvemini F, Giraud S, Chaufour S, Paul C, Stepien G, et al. Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp Cell Res 1999;247:61–78
  • Yi MJ, Park SH, Cho HN, Yong Chung H, Kim JI, Cho CK, et al. Heat-shock protein 25 (HspB1) regulates manganese superoxide dismutase through activation of Nfkb (NF-kappaB). Radiat Res 2002;158:641–9
  • Marin-Vinader L, Shin C, Onnekink C, Manley JL, Lubsen NH. Hsp27 enhances recovery of splicing as well as rephosphorylation of SRp38 after heat shock. Mol Biol Cell 2006;17:886–94
  • Mehlen P, Préville X, Kretz-Remy C, Arrigo A-P. Human hsp27, Drosophila hsp27 and human aB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these protein against TNFa-induced cell death. EMBO J 1996;15:2695–706
  • Dodd SL, Hain B, Senf SM, Judge AR. Hsp27 inhibits IKKbeta-induced NF-kappaB activity and skeletal muscle atrophy. FASEB J 2009;23:3415–23
  • Vos MJ, Kanon B, Kampinga HH. HspB7 is a SC35 speckle resident small heat shock protein. Biochim Biophys Acta 2009;1793:1343–53
  • Alford KA, Glennie S, Turrell BR, Rawlinson L, Saklatvala J, Dean JL. HSP27 functions in inflammatory gene expression and TAK1-mediated signalling. J Biol Chem 2007;282:6232–41
  • Tong SW, Yang YX, Hu HD, An X, Ye F, Ren H, et al. HSPB1 is an intracellular antiviral factor against hepatitis B virus. J Cell Biochem 2013;114:162–73
  • Kerr BA, Byzova TV. AlphaB-crystallin: A novel VEGF chaperone. Blood 2010;115:3181–3
  • Ghosh JG, Shenoy AK, Jr., Clark JI. Interactions between important regulatory proteins and human alphaB crystallin. Biochemistry 2007;46:6308–17
  • Adhikari AS, Singh BN, Rao KS, Rao Ch M. alphaB-crystallin, a small heat shock protein, modulates NF-kappaB activity in a phosphorylation-dependent manner and protects muscle myoblasts from TNF-alpha induced cytotoxicity. Biochim Biophys Acta 2011;1813:1532–42
  • Liu S, Li J, Tao Y, Xiao X. Small heat shock protein alphaB-crystallin binds to p53 to sequester its translocation to mitochondria during hydrogen peroxide-induced apoptosis. Biochem Biophys Res Commun 2007;354:109–14
  • Lin DI, Barbash O, Kumar KG, Weber JD, Harper JW, Klein-Szanto AJ, et al. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Mol Cell 2006;24:355–66
  • Fu L, Liang JJ. Detection of protein–protein interactions among lens crystallins in a mammalian two-hybrid system assay. J Biol Chem 2002;277:4255–60
  • Xi JH, Bai F, McGaha R, Andley UP. Alpha-crystallin expression affects microtubule assembly and prevents their aggregation. FASEB J 2006;20:846–57
  • den Engelsman J, Gerrits D, de Jong WW, Robbins J, Kato K, Boelens WC. Nuclear import of alphaB-crystallin is phosphorylation-dependent and hampered by hyperphosphorylation of the myopathy-related mutant R120G. J Biol Chem 2005;280:37139–48
  • Gangalum RK, Bhat SP. The small heat shock protein alphaB-crystallin is a Golgi associated membrane protein in the developing ocular lens. Invest Ophthalmol Vis Sci 2009;50:3283–90
  • Mao YW, Liu JP, Xiang H, Li DW. Human alphaA- and alphaB-crystallins bind to Bax and Bcl-X(S) to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ 2004;11:512–26
  • Hu WF, Gong L, Cao Z, Ma H, Ji W, Deng M, et al. alphaA- and alphaB-crystallins interact with caspase-3 and Bax to guard mouse lens development. Curr Mol Med 2012;12:177–87
  • Hook D, Harding J. Alpha-crystallin acting as a molecular chaperone protects catalase against steroid-induced inactivation. FEBS Lett 1996;382:281–4
  • Shinder GA, Lacourse MC, Minotti S, Durham HD. Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J Biol Chem 2001;276:12791–6
  • Del Vecchio PJ, MacElroy KS, Rosser MP, Church RL. Association of alpha-crystallin with actin in cultured lens cells. Curr Eye Res 1984;3:1213–19
  • Wang K, Spector A. alpha-crystallin stabilizes actin filaments and prevents cytochalasin-induced depolymerization in a phosphorylation-dependent manner. Eur J Biochem 1996;242:56–66
  • Singh BN, Rao KS, Ramakrishna T, Rangaraj N, Rao Ch M. Association of alphaB-crystallin, a small heat shock protein, with actin: Role in modulating actin filament dynamics in vivo. J Mol Biol 2007;366:756–67
  • Ghosh JG, Houck SA, Clark JI. Interactive sequences in the stress protein and molecular chaperone human alphaB crystallin recognize and modulate the assembly of filaments. Int J Biochem Cell Biol 2007;39:1804–15
  • Ohto-Fujita E, Fujita Y, Atomi Y. Analysis of the alphaB-crystallin domain responsible for inhibiting tubulin aggregation. Cell Stress Chaperones 2007;12:163–71
  • Ghosh JG, Houck SA, Clark JI. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly. PLoS One 2007;2:e498
  • Djabali K, de Nechaud B, Landon F, Portier MM. AlphaB-crystallin interacts with intermediate filaments in response to stress. J Cell Sci 1997;110:2759–69
  • Djabali K, Piron G, de Nechaud B, Portier MM. alphaB-crystallin interacts with cytoplasmic intermediate filament bundles during mitosis. Exp Cell Res 1999;253:649–62
  • Tang G, Perng MD, Wilk S, Quinlan R, Goldman JE. Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition. J Biol Chem 2010;285:10527–37
  • Muchowski PJ, Valdez MM, Clark JI. AlphaB-crystallin selectively targets intermediate filament proteins during thermal stress. Invest Ophthalmol Vis Sci 1999;40:951–8
  • Barton KA, Hsu CD, Petrash JM. Interactions between small heat shock protein alpha-crystallin and galectin-related interfiber protein (GRIFIN) in the ocular lens. Biochemistry 2009;48:3956–66
  • Thedieck C, Kalbacher H, Kratzer U, Lammers R, Stevanovic S, Klein G. AlphaB-crystallin is a cytoplasmic interaction partner of the kidney-specific cadherin-16. J Mol Biol 2008;378:145–53
  • Devlin GL, Carver JA, Bottomley SP. The selective inhibition of serpin aggregation by the molecular chaperone, alpha-crystallin, indicates a nucleation-dependent specificity. J Biol Chem 2003;278:48644–50
  • Sun G, Guo M, Shen A, Mei F, Peng X, Gong R, et al. Bovine PrPC directly interacts with alphaB-crystalline. FEBS Lett 2005;579:5419–24
  • Hatters DM, Lindner RA, Carver JA, Howlett GJ. The molecular chaperone, alpha-crystallin, inhibits amyloid formation by apolipoprotein C-II. J Biol Chem 2001;276:33755–61
  • Shammas SL, Waudby CA, Wang S, Buell AK, Knowles TP, Ecroyd H, et al. Binding of the molecular chaperone alphaB-crystallin to Abeta amyloid fibrils inhibits fibril elongation. Biophys J 2011;101:1681–9
  • Inagaki N, Hayashi T, Arimura T, Koga Y, Takahashi M, Shibata H, et al. AlphaB-crystallin mutation in dilated cardiomyopathy. Biochem Biophys Res Commun 2006;342:379–86
  • Spector A, Li LK, Augusteyn RC, Schneider A, Freund T. Alpha-crystallin: The isolation and characterization of distinct macromolecular fractions. Biochem J 1971;124:337–43
  • Kamradt MC, Lu M, Werner ME, Kwan T, Chen F, Strohecker A, et al. The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. J Biol Chem 2005;280:11059–66
  • Li DW, Liu JP, Mao YW, Xiang H, Wang J, Ma WY, et al. Calcium-activated RAF/MEK/ERK signaling pathway mediates p53-dependent apoptosis and is abrogated by alphaB-crystallin through inhibition of RAS activation. Mol Biol Cell 2005;16:4437–53
  • Liu JP, Schlosser R, Ma WY, Dong Z, Feng H, Lui L, et al. Human alphaA- and alphaB-crystallins prevent UVA-induced apoptosis through regulation of PKCalpha, RAF/MEK/ERK and AKT signaling pathways. Exp Eye Res 2004;79:393–403
  • Rajasekaran NS, Connell P, Christians ES, Yan LJ, Taylor RP, Orosz A, et al. Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell 2007;130:427–39
  • van den Ljssel P, Wheelock R, Prescott A, Russell P, Quinlan RA. Nuclear speckle localisation of the small heat shock protein alphaB-crystallin and its inhibition by the R120G cardiomyopathy-linked mutation. Exp Cell Res 2003;287:249–61
  • Havugimana PC, Hart GT, Nepusz T, Yang H, Turinsky AL, Li Z, et al. A census of human soluble protein complexes. Cell 2012;150:1068–81
  • Carra S, Seguin SJ, Lambert H, Landry J. HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J Biol Chem 2008;283:1437–44
  • Fontaine JM, Sun X, Hoppe AD, Simon S, Vicart P, Welsh MJ, et al. Abnormal small heat shock protein interactions involving neuropathy-associated Hsp22 (HspB8) mutants. FASEB J 2006;20:2168–70

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.