3,012
Views
123
CrossRef citations to date
0
Altmetric
Review Articles

Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia

&
Pages 739-751 | Received 30 Apr 2013, Accepted 16 Jul 2013, Published online: 03 Sep 2013

References

  • Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parront JC, Taylor CB. Selective inductive heating of lymph nodes. Ann Surg 1957;146:596–606
  • Hergt R, Andrä W. Magnetic hyperthermia and thermoablation. In: Andrä W, Nowak H, editors. Magnetism in Medicine: A Handbook. Weinheim: Wiley, 2007. pp 550–70
  • Moroz P, Jones SK, Gray BN. Magnetically mediated hyperthermia: Current status and future directions. Int J Hyperthermia 2002;18:267–84
  • Lartigue L, Hugounenq P, Alloyeau D, Clarke SP, Lévy M, Bacri JC, et al. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 2012;6:10935–49
  • Meffre A, Mehdaoui B, Kelsen V, Fazzini PF, Carrey J, Lachaize S, et al. A simple chemical route toward monodisperse iron carbide nanoparticles displaying tunable magnetic and unprecedented hyperthermia properties. Nano Lett 2012;12:4722–8
  • Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 2011;6:418–22
  • Kaman O, Veverka P, Jirák Z, Marysko M, Knízek K, Veverka M, et al. The magnetic and hyperthermia studies of bare and silica-coated La0.75Sr0.25MnO3 nanoparticles. J Nanopart Res 2011;13:1237–52
  • Aqil A, Vasseur S, Duguet E, Passirani C, Benoit JP, Jerome R, et al. Magnetic nanoparticles coated by temperature responsive copolymers for hyperthermia. J Mater Chem 2008;18:3352–60
  • Taylor A, Krupskaya Y, Krämer K, Füssel S, Klingeler R, Büchner B, et al. Cisplatin-loaded carbon-encapsulated iron nanoparticles and their in vitro effects in magnetic fluid hyperthermia. Carbon 2010;48:2327–34
  • Kim DH, Nikles DE, Brazel CS. Synthesis and characterization of multifunctional chitosan-MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery. Materials 2010;3:4051–65
  • Fortin JP, Gazeau F, Wilhelm C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur Biophys J 2008;37:223–8
  • Zhang JP, Dewilde AH, Chinn P, Foreman A, Barry S, Kanne D, et al. Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia. Int J Hyperthermia 2011;27:682–97
  • Portela A, Vasconcelos M, Fernandes MH, Garcia M, Silva A, Gabriel J, et al. Highly focalised thermotherapy using a ferrimagnetic cement in the treatment of a melanoma mouse model by low temperature hyperthermia. Int J Hyperthermia 2013;29:121–32
  • Zhai Y, Xie H, Gu HC. Effects of hyperthermia with dextran magnetic fluid on the growth of grafted H22 tumor in mice. Int J Hyperthermia 2009;25:65–71
  • Li FR, Yan WH, Guo YH, Qi H, Zhou HX. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Int J Hyperthermia 2009;25:383–91
  • Le Renard PE, Buchegger F, Petri-Fink A, Bosman F, Rufenacht D, Hofmann H, et al. Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model. Int J Hyperthermia 2009;26:229–39
  • Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011;103:317–24
  • Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 2007;81:53–60
  • Wust P, Gneveckov U, Johannsen M, Böhmer D, Henkel T, Kahmann F, et al. Magnetic nanoparticles for interstitial thermotherapy – Feasibility, tolerance and achieved temperatures. Int J Hyperthermia 2006;22:673–5
  • Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldöfner N, et al. Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperature distriution. Eur Urol 2007;52:1653–62
  • Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldofner N, Scholz R. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial. Int J Hyperthermia 2007;23:315–23
  • Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldofner N, Scholz R, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int J Hyperthermia 2005;21:637–47
  • Gneveckow U, Jordan A, Scholz R, Brüss V, Waldöfner N, Ricke J, et al. Description and characterization of the novel hyperthermia- and thermoablation-system MFH300F for clinical magnetic fluid hyperthermia. Med Phys 2004;31:1444–51
  • Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, et al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Mater 2001;225:118–26
  • Golneshan AA, Lahonian M. The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method. Int J Hyperthermia 2011;27:266–74
  • Bellizzi G, Bucci OM. On the optimal choice of the exposure conditions and the nanoparticle features in magnetic nanoparticle hyperthermia. Int J Hyperthermia 2010;26:389–403
  • Bordelon DE, Goldstein RC, Nemkov VS, Kumar A, Jackowski JK, DeWeese TL, et al. Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications. IEEE Trans Magn 2012;48:47–52
  • Bekovic M, Hamler A. Determination of the heating effect of magnetic fluid in alternating magnetic field. IEEE Trans Magn 2010;46:552–5
  • Rovers SA, van der Poel LAM, Dietz CHJT, Noijen JJ, Hoogenboom R, Kemmere MF, et al. Characterization and magnetic heating of commercial superparamagnetic iron oxide nanoparticles. J Phys Chem C 2009;113:14638–43
  • Natividad E, Castro M, Mediano A. Accurate measurement of the specific absorption rate using a suitable adiabatic magnetothermal setup. Appl Phys Lett 2008;92:093116-1–3
  • Kallumadil M, Tada M, Nakagawa T, Abe M, Southern P, Pankhurst QA. Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 2009;321:1509–13
  • Huang S, Wang SY, Gupta A, Borca-Tasciuc DA, Salon SJ. On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field. Meas Sci Technol 2012;23:035701-1–6
  • Friedrich T, Lang T, Rehberg I, Richter R. Spherical sample holders to improve the susceptibility measurement of superparamagnetic materials. Rev Sci Instrum 201;83:045106-1--7
  • Reilly JP. Applied Bioelectricity: From Electrical Stimulation to Electropathology. Berlin: Springer; 1998
  • Atkinson WJ, Brezovich IA, Chakraborty DP. Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng 1984;31:70–5
  • Silva AC, Oliveira TR, Mamani JB, Malheiros SMF, Malavolta L, Pavon LF, et al. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomedicine 2011;6:591–603
  • Alphandéry E, Faure S, Raison L, Duguet E, Howse PA, Bazylinski DA. Heat production by bacterial magnetosomes exposed to an oscillating magnetic field. J Phys Chem C 2011;115:18–22
  • Shah SA, Hashmi MU, Alam S. Effect of aligning magnetic field on the magnetic and calorimetric properties of ferrimagnetic bioactive glass ceramics for the hyperthermia treatment of cancer. Mater Sci Eng C-Biol 2011;31:1010–16
  • Zhang LY, Gu HC, Wang XM. Magnetite ferrofluid with high specific absorption rate for application in hyperthermia. J Magn Magn Mater 2007;311:228–33
  • Pollert E, Knizek K, Marysko M, Kaspar P, Vasseur S, Duguet E. New Tc-tuned magnetic nanoparticles for self-controlled hyperthermia. J Magn Magn Mater 2007;316:122–5
  • Kobayashi H, Ueda K, Tomitaka A, Yamada T, Takemura Y. Self-heating property of magnetite nanoparticles dispersed in solution. IEEE Trans Magn 2011;47:4151–4
  • Aono H, Watanabe Y, Naohara T, Maehara T, Hirazawa H, Watanabe Y. Effect of bead milling on heat generation ability in AC magnetic field of Fe Fe2O4 powder. Mater Chem Phys 2011;129:1081–8
  • Bekovic M, Trlep M, Jesenik M, Gorican V, Hamler A. An experimental study of magnetic-field and temperature dependence on magnetic fluid’s heating power. J Magn Magn Mater 2013;331:264–8
  • Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, Hamada S, et al. Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials 2005;26:2231–8
  • Gudoshnikov SA, Liubimov BY, Usov NA. Hysteresis losses in a dense superparamagnetic nanoparticle assembly. AIP Advances 2012;2:012143-1–6
  • Glöckl G, Hergt R, Zeisberger M, Dutz S, Nagel S, Weitschies W. The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J Phys Condens Matter 2006;18:S2935–49
  • Atsarkin VA, Generalov AA, Demidov VV, Mefed AE, Markelova MN, Gorbenko OY, et al. Critical RF losses in fine particles of La1-xAgyMnO3+δ: Prospects for temperature-controlled hyperthermia. J Magn Magn Mater 2009;321:3198–202
  • Ahrentorp F, Astalan AP, Jonasson C, Blomgren J, Qi B, Thompson O, et al. Sensitive high frequency AC susceptometry in magnetic nanoparticle applications. AIP Conf Proc 2010;1311:213–23
  • Nakamura K, Ueda K, Tomitaka A, Yamada T, Takemura Y. Self-heating temperature and AC hysteresis of magnetic iron oxide nanoparticles and their dependence on secondary particle size. IEEE Trans Magn 2013;49:240–3
  • Oireachtaigh CM, Fannin PC. Investigation of the non-linear loss properties of magnetic fluids subject to large alternating fields. J Magn Magn Mater 2008;320:871–80
  • Aono H, Ebara H, Senba R, Naohara T, Maehara T, Hirazawa H, et al. High heat generation ability in AC magnetic field for nano-sized magnetic Y3Fe5O12 powder prepared by bead milling. J Magn Magn Mater 2012;324:1985–91
  • Babincová M, Leszczynska D, Sourivong P, Cicmanec P, Babinec P. Superparamagnetic gel as novel material for electromagnetically induced hyperthermia. J Magn Magn Mater 2001;225:109–12
  • Sharma M, Mantri S, Bahadur D. Study of carbon encapsulated iron oxide/iron carbide nanocomposite for hyperthermia. J Magn Magn Mater 2012;324:3975–80
  • Verde EL, Landi GT, Gomes JA, Sousa MH, Bakuzis AF. Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: Comparison between experiment, linear response theory, and dynamic hysteresis simulations. J Appl Phys 2012;111:123902-1–8
  • Franchini MC, Baldi G, Bonacchi D, Gentili D, Giudetti G, Lascialfari A, et al. Bovine serum albumin-based magnetic nanocarrier for MRI diagnosis and hyperthermic therapy: A potential theranostic approach against cancer. Small 2010;6:366–70
  • Marcos-Campos I, Asín L, Torres TE, Marquina C, Tres A, Ibarra MR, et al. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells. Nanotechnology 2011;22:205101-1–13
  • Wang XM, Gu HC, Yang ZQ. The heating effect of magnetic fluids in an alternating magnetic field. J Magn Magn Mater 2005;293:334–40
  • Hergt R, Hiergeist R, Hilger I, Kaiser WA, Lapatnikov Y, Margel S, et al. Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater 2004;270:345–57
  • Bordelon DE, Cornejo C, Grüttner C, Westphal F, DeWeese TL, Ivkov R. Magnetic nanoparticles heating efficiency reveals magneto-structural differences when characterized with wide ranking and high amplitude alternating magnetic fields. J Appl Phys 2011;109:124904-1–8
  • Kasuya R, Kikuchi T, Mamiya H, Ioku K, Endo S, Nakamura A, et al. Heat dissipation characteristics of magnetite nanoparticles and their application to macrophage cells. Phys Proc 2010;9:186–9
  • Kline TL, Xu YH, Jing Y, Wang JP. Biocompatible high-moment FeCo-Au magnetic nanoparticles for magnetic hyperthermia treatment optimization. J Magn Magn Mater 2009;321:1525–8
  • Kita E, Hashimoto S, Kayano T, Minagawa M, Yanagihara H, Kishimoto M, et al. Heating characteristics of ferromagnetic iron oxide nanoparticles for magnetic hyperthermia. J Appl Phys 2010;107:09B321-1–3
  • Khandar AP, Ferguson RM, Simon JA, Krishnan KM. Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia. J Appl Phys 2012;111:07B306-1–3
  • Regmi R, Black C, Sudakar C, Keyes PH, Naik R, Lawes G, et al. Effects of fatty acid surfactants on the magnetic and magnetohydrodynamic properties of ferrofluids. J Appl Phys 2009;106:113902-1–9
  • Li CH, Hodgins P, Peterson GP. Experimental study of fundamental mechanisms in inductive heating of ferromagnetic nanoparticles suspension (Fe3O4 iron oxide ferrofluid). J Appl Phys 2011;110:054303-1–10
  • Drake P, Cho HJ, Shih PS, Kao CH, Lee KF, Kuo CH, et al. Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. J Mater Chem 2007;17:4914–18
  • Ma M, Wu Y, Zhou H, Sun YK, Zhang Y, Gu N. Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J Magn Magn Mater 2004;268:33–9
  • Maity D, Chadrasekharan P, Pradhan P, Chuang KH, Xue JM, Feng SS, et al. Novel synthesis of superparamagnetic magnetite nanoclusters for biomedical applications. J Mater Chem 2011;21:14717–24
  • Salas G, Casado C, Teran FJ, Miranda R, Serna C, Morales MP. Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. J Mater Chem 2012;22:21065–75
  • Luong TT, Ha TP, Tran LD, Do MH, Mai TT, Pham NH, et al. Design of carboxylated Fe3O4/poly(styrene-co-acrylic acid) ferrofluids with highly efficient magnetic heating effect. Colloids Surf A 2011;384:23–30
  • Thorat ND, Shinde KP, Pawar SH, Barick KC, Betty CA, Ningthoujam RS. Polyvinyl alcohol: An efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical applications. Dalton Trans 2012;41:3060–71
  • Shlyakhtin OA, Leontiev VG, Oh YJ, Kuznetsov AA. New manganite-based mediators for self-controlled magnetic heating. Smart Mater Struct 2007;16:N35–9
  • Izydorzak M, Skumiel A, Leonowicz M, Kaczmarek-Klinowska M, Pomogailo AD, Dzhardimalieva GI. Thermophysical and magnetic properties of carbon beads containing cobalt nanocrystallites. Int J Thermophys 2012;33:627–39
  • Zhao DL, Zhan HL, Zeng XW, Xia QS, Tang JT. Inductive heat property of Fe3O4/polymer composite nanoparticles in an AC magnetic field for localized hyperthermia. Biomed Mater 2006;1:198–201
  • Chalkidou A, Simeonidis K, Angelakeris M, Samaras T, Martinez-Boubeta C, Balcells Ll, et al. In vitro application of Fe/MgO nanoparticles as magnetically mediated hyperthermia agents for cancer treatment. J Magn Magn Mater 2010;323:775–80
  • Bae S, Lee SW, Takemura Y, Yamashinta E, Kunisaki J, Zurn S, et al. Dependence of frequency and magnetic field on self-heating characteristics of NiFe2O4 nanoparticles for hyperthermia. IEEE Trans Magn 2006;42:3566–8
  • Jeun M, Jeoung JW, Moon S, Kim YJ, Lee S, Paek SH, et al. Engineered superparamagnetic Mn0.5Zn0.5Fe2O4 nanoparticles as a heat shock protein induction agent for ocular neuroprotection in glaucoma. Biomaterials 2011;32:387–94
  • Kalambur VS, Han B, Hammer BE, Shield TW, Bischof JC. In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications. Nanotechnology 2005;16:1221–33
  • Yuan Y, Borca-Tasciuc DA. Comparison between experimental and predicted specific absorption rate of functionalized iron oxide nanoparticle suspensions. J Magn Magn Mater 2011;323:2463–9
  • Kim DH, Nikles DE, Johnson DT, Brazel CS. Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J Magn Magn Mater 2008;320:2390–6
  • Brusentsov NA, Gogosov VV, Brusentsova TN, Sergeev AV, Jurchenko NY, Kuznetsov AA, et al. Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro. J Magn Magn Mater 2001;225:113–17
  • Gómez-Polo C, Larumbe S, Pérez-Landazábal JI, Pastor JM, Olivera J, Soto-Armañanzas J. Magnetic induction heating of FeCr nanocrystalline alloys. J Magn Magn Mater 2012;324:1897–901
  • Hadjipanayis CG, Bonder MJ, Balakrishnan S, Wang X, Mao H, Hadjipanayis GC. Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 2008;4:1925–9
  • Barick KC, Hassan PA. Glycine passivated Fe3O4 nanoparticles for thermal therapy. J Colloid Interf Sci 2012;369:96–102
  • Satarkar NS, Hilt JZ. Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomater 2008;4:11–16
  • Chastellain M, Petri A, Gupta A, Rao KV, Hofmann H. Superparamagnetic silica-iron oxide nanocomposites for application in hyperthermia. Adv Eng Mater 2004;6:235–41
  • Chen W, Chiang CL, Hsieh S. Simulating physiological conditions to evaluate nanoparticles for magnetic fluid hyperthermia (MFH) therapy applications. J Magn Magn Mater 2012;32:247–52
  • Jordan A, Rheinländer T, Waldöfner N, Scholz R. Increase of the specific absorption rate (SAR) by magnetic fractionation of magnetic fluids. J Nanopart Res 2003;5:597–600
  • Konishi K, Maehara T, Kamimori T, Aono H, Naohara T, Kikkawa H, et al. Heating ferrite powder with AC magnetic field for thermal coagulation therapy. J Magn Magn Mater 2004;272:2428–9
  • Rivas J, Bañobre-López M, Piñeiro-Redondo Y, Rivas B, López-Quintela MA. Magnetic nanoparticles for application in cancer therapy. J Magn Magn Mater 2012;324:3499–502
  • Skumiel A, Józefczak A, Timko M, Kopcansky P, Herchl F, Koneracka M, et al. Heating effect in biocompatible magnetic fluid. Int J Thermophys 2007;28:1461–9
  • McGill SL, Cuylear CL, Adolphi NL, Osinski M, Smyth HDC. Magnetically responsive nanoparticles for drug delivery applications using low magnetic field strengths. IEEE Trans Nanobioscience 2009;8:33–42
  • Zeng P, Kline TL, Wang JP, Wiedmann TS. Thermal response of superparamagnetic particles suspended in liquid and solid media. J Magn Magn Mater 2009;321:373–6
  • Wu SYH, Tseng CL, Lin FH. A newly developed Fe-doped calcium sulfide nanoparticles with magnetic property for cancer hyperthermia. J Nanopart Res 2010;12:1173–85
  • Frimpong RA, Dou J, Pechan M, Hilt JZ. Enhancing remote controlled heating characteristics in hydrophilic magnetite nanoparticles via facile co-precipitation. J Magn Magn Mater 2010;322:326–31
  • Li Z, Kawashita M, Araki N, Mitsumori M, Hiraoka M, Doi M. Magnetic SiO2 gel microspheres for arterial embolization hyperthermia. Biomed Mater 2010;5:065010-1–9
  • Carrey J, Mehdaoui B, Respaud M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J Appl Phys 2011;109:083921-1–17
  • Müller R, Dutz S, Neeb A, Cato ACB, Zeisberger M. Magnetic heating effect of nanoparticles with different sizes and size distributions. J Magn Magn Mater 2013;328:80–5
  • Serantes D, Baldomir D, Martinez-Boubeta C, Simeonidis K, Angelakeris M, Natividad E, et al. Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. J Appl Phys 2010;108:073918-1–5
  • Bedanta S, Kleemann W. Supermagnetism. J Phys D: Appl Phys 2009;42:013001-1--23
  • Buschow KHJ, de Boer FR. Physics of magnetism and magnetic materials. New York, NY: Kluwer Academic, Plenum Publishers; 2003
  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 2001;252:370–4
  • Baker I, Zeng Q, Li W, Sullivan CR. Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia. J Appl Phys 2006;99:08H106-1–3
  • Bretcanu O, Verné E, Cöisson M, Tiberto P, Allia P. Magnetic properties for the ferrimagnetic glass-ceramics for hyperthermia. J Magn Magn Mater 2006;305:529–33
  • Kim DH, Kim KN, Kim KM, Shim IB, Lee MH, Lee YK. Tuning of magnetite nanoparticles to hyperthermic thermoseed by controlled spray method. J Mater Sci 2006;46:7279–82
  • Kita E, Yanagihara H, Hashimoto S, Yamada K, Oda T, Kishimoto M, et al. Hysteresis power-loss heating of ferromagnetic nanoparticles designed for magnetic thermoablation. IEEE Trans Magn 2008;44:4452–5
  • Le Renard PE, Lortz R, Senatore C, Rapin JP, Buchegger F, Petri-Fink A, et al. Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia. J Magn Magn Mater 2011;323:1054–63
  • Fiorillo F. Measurements of magnetic materials. Metrologia 2010;47:114–42
  • McElfresh M. Fundamentals of Magnetism and Magnetic Measurements. San Diego, CA: Quantum Design; 1994
  • Poperechny IS, Raikher YL, Stepanov VI. Dynamic magnetic hysteresis in single-domain particles with uniaxial anisotropy. Phys Rev B 2010;82:174423-1–14
  • Cullity BD, Graham CD. Introduction to Magnetic Materials. Hoboken, NJ: Wiley; 2008
  • Cobos P, Maicas M, Sanz M, Aroca C. High resolution system for nanoparticles hyperthermia efficiency evaluation. IEEE Trans Magn 2011;47:2360–3
  • Holman JP. Heat Transfer. New York, NY: McGraw Hill; 1996
  • Hilger I, Frühauf K, Andrä W, Hiergeist R, Hergt R, Kaiser WA. Heating potential of iron oxides for therapeutic purposes in interventional radiology. Acad Radiol 2002;9:198–202
  • Jones SK, Winter JG. Experimental examination of a targeted hyperthermia system using inductively heated ferromagnetic microspheres in rabbit kidney. Phys Med Biol 2001;46:385–98
  • Chen SW, Lai JJ, Chiang CL, Chen CL. Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles. Rev Sci Instrum 2012;83:064701
  • Natividad E, Castro M, Mediano A. Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids. J Magn Magn Mater 2009;321:1497–500
  • Wang SY, Huang S, Borca-Tasciuc DA. Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magnetic field. IEEE Trans Magn 2012;49:255–62
  • Gmelin E. Modern low-temperature calorimetry. Thermochim Acta 1979;29:1–39
  • Sullivan PF, Seidel G. Steady-state, AC-temperature calorimetry. Phys Rev 1968;173:679–85
  • Stewart GR. Measurement of low-temperature specific heat. Rev Sci Instrum 1983;54:1–11
  • Bachmann R, DiSalvo F, Geballe T, Greene RL, Howard RE, King CN, et al. Heat capacity measurements on small samples at low temperatures. Rev Sci Instrum 1972;43:205–14
  • Andreu I, Natividad E, Borrell CJ, Mediano A, Castro M. Medida del ritmo de absorción específico de ferrofluidos mediante un equipo de magnetotermia no adiabática. [Measurement of the specific absorption rate of ferrofluids using a non-adiabatic magnetothermal set-up]. Poster session presented at the XI Congreso Nacional de Materiales, Zaragoza, Spain, 23--25 June 2010
  • Schnelle W, Gmelin E. Critical review of small sample calorimetry: improvement by auto-adaptive thermal shield control. Thermochim Acta 2002;391:41–9
  • Natividad E, Castro M, Goglio G, Andreu I, Epherre R, Duguet E, et al. New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia. Nanoscale 2012;4:3954–62
  • Natividad E, Castro M, Mediano A. Adiabatic magnetothermia makes possible the study of the temperature dependence of the heat dissipated by magnetic nanoparticles under alternating magnetic fields. Appl Phys Lett 2011;98:243119-1–3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.