3,609
Views
172
CrossRef citations to date
0
Altmetric
Physics and Engineering

Techniques for temperature monitoring during laser-induced thermotherapy: An overview

, &
Pages 609-619 | Received 01 May 2013, Accepted 02 Aug 2013, Published online: 13 Sep 2013

References

  • Huang-Wen H, Chihng-Tsung L. Review: Therapeutical applications of heat in cancer therapy. J Med Bio Eng 2011;32:1–11
  • Müller G, Roggan A. Laser-Induced Interstitial Thermotherapy. Washington, DC: SPIE Optical Engineering Press, 1995
  • Saccomandi P, Schena E, Di Matteo FM, Pandolfi M, Martino M, Rea R, et al. Laser interstitial thermotherapy for pancreatic tumor ablation: Theoretical model and experimental validation. Conf Proc IEEE Eng Med Biol Soc 2011;5585–8
  • Di Matteo F, Martino M, Rea R, Pandolfi M, Rabitti C, Masselli GMP, et al. EUS-guided Nd:YAG laser ablation of normal pancreatic tissue: A pilot study in a pig model. Gastrointest Endosc 2010;72:358–63
  • Bowman RR. A probe for measuring temperature in radio-frequency-heated material. IEEE Trans Microw Theory 1976;24:43–5
  • Christensen DA. Thermal dosimetry and temperature measurements. Cancer Res 1979;39:2325–7
  • Cetas TC, Connor WG. Thermometry considerations in localized hyperthermia. Med Phys 1978;5:79–91
  • Cetas TC, Connor WG, Manning MR. Monitoring of tissue temperature during hyperthermia therapy. Ann NY Acad Sci 1980;335:281–97
  • Cain CP, Welch AJ. Thin-film temperature sensors for biological measurements. IEEE Trans Biomed Eng 1974;21:421–3
  • Christensen DA. A new nonperturbing temperature probe using semiconductor band edge shift. J Bioeng 1977;1:541–5
  • Nasoni RL, Bowen T, Connor WG, Sholes RR. In vivo temperature dependence of ultrasound speed in tissue and its application to noninvasive temperature monitoring. Ultrason Imag 1979;1:34–43
  • Parker DL. Applications of NMR imaging in hyperthermia: An evaluation of the potential for localized tissue heating and noninvasive temperature monitoring. IEEE Trans Biomed Eng 1984;31:161–7
  • Fallone BG, Moran PR, EB Podgorsak. Noninvasive thermometry with a clinical X-ray CT scanner. Med Phys 1982;9:715–21
  • Manns F, Milne PJ, Gonzales-Cirre X, Denham DB, Parel JM, Robinson DS. In situ temperature measurements with thermocouple probes during laser interstitial thermotherapy (LITT): Quantification and correction of a measurement artifact. Laser Surg Med 1998;23:94–103
  • AJ Welch. Measurement and prediction of thermal injury in the retina of the rhesus monkey. IEEE Trans Biomed Eng 1984;31:633–44
  • Verdaasdonk RM, Holstege FC, Jansen D, Borst C. Temperature along the surface of modified fiber tips for Nd:YAG laser angioplasty. Laser Surg Med 1991;11:213–22
  • Germer CT, Albrecht D, Roggan A, Isbert C, Buhr HJ. Experimental study of laparoscopic laser-induced thermotherapy for liver tumours. Brit J Surg 1997;84:317–20
  • Muschter R, Whitfield H. Interstitial laser therapy of benign prostatic hyperplasia. Eur Urol 1999;35:147–54
  • Anvari B, Motamedi M, Torres JH, Rastegar S, Orihuela E. Effects of surface irrigation on the thermal response of tissue during laser irradiation. Laser Surg Med 1994;14:386–95
  • Robinson DS, Parel JM, Denham DB, Gonzales-Cirre X, Manns F, Milne PJ, et al. Interstitial laser hyperthermia model development for minimally invasive therapy of breast carcinoma. J Am Coll Surg 1998;186:284–92
  • Salas N, Manns F, Milne PJ, Denham DB, Minhaj AM, Parel JM, et al. Thermal analysis of laser interstitial thermotherapy in ex vivo fibro-fatty tissue using exponential functions. Phys Med Biol 2004;49:1609–24
  • Milne PJ, Parel JM, Manns F, Denham DB, Gonzalez-Cirre X, Robinson DS. Development of stereotactically guided laser interstitial thermotherapy of breast cancer: In situ measurement and analysis of the temperature field in ex vivo and in vivo adipose tissue. Laser Surg Med 2000;26:67–75
  • Reid AD, Gertner MR, Sherar MD. Temperature measurement artefacts of thermocouples and fluoroptic probes during laser irradiation at 810 nm. Phys Med Biol 2001;46:N149–57
  • Van Nimwegen SA, L’Eplattenier HF, Rem AI, van der Lugt JJ, Kirpensteijn J. Nd:YAG surgical effects in canine prostate tissue: Temperature and damage distribution. Phys Med Biol 2009;54:29–44
  • Rao YJ. In-fiber Bragg grating sensors. Meas Sci Technol 1997;8:355–75
  • Kersey AD, Michael AD, Heather JP, LeBlanc M, Koo KP, Askins CG, et al. Fiber grating sensors. J Lightwave Technol 1997;15:1442–63
  • Mishra V, Singh N, Tiwari U, Kapur P. Fiber grating sensors in medicine: Current and emerging applications. Sens Actuators A Phys 2011;167:279–90
  • Silvestri S, Schena E. Optical-fiber measurement systems for medical applications. In: Predeep P, editors. Optoelectronics: Devices and Applications. Rijeka, Croatia: InTech, 2011, pp. 205–24
  • Rao YJ. Recent progress in applications of in-fibre Bragg grating sensors. Opt Laser Eng 1999;31:297–324
  • Rao YJ, Hurle B, Webb DJ, Jackson DA, Zhang L, Bennion I. In-situ temperature monitoring in NMR machines with a prototype in-fibre Bragg grating sensor system. Conf Proc OSA Optical Fibre Sensors 1997;646–9
  • Rao YJ, Webb DJ, Jackson DA, Zhang L, Bennion I. Optical in-fibre Bragg grating sensor system for medical applications. J Biomed Opt 1998;31:38–44
  • Webb DJ, Hathaway MW, Jackson DA, Jones S, Zhang L, Bennion I. First in vivo trials of a fiber Bragg grating based temperature profiling system. J Biomed Opt 2000;5:45–50
  • Samset E, Mala T, Ellingsen R, Gladhaug I, Søreide O, Fosse E. Temperature measurement in soft tissue using a distributed fiber Bragg grating sensor system. Minim Invasiv Ther 2001;10:89–93
  • Gowardhan B, Greene D. Cryotherapy for the prostate: An in vitro and clinical study of two new developments; Advanced cryoneedles and a temperature monitoring system. BJU Int 2007;100:295–302
  • Saccomandi P, Schena E, Caponero MA, Di Matteo FM, Martino M, Pandolfi M, et al. Theoretical analysis and experimental evaluation of laser induced interstitial thermotherapy in ex vivo porcine pancreas. IEEE Trans Biomed Eng 2012;59:2958–64
  • Wickersheim KA, Sun MH. Fiberoptic thermometry and its applications. J Microwave Power 1987;22:85–94
  • Grattan KTV, Zhang ZY. Introduction. In: Grattan KTV, Zhang ZY, editors. Fiber Optic Fluorescence Thermometry. New York, NY: Springer, 1995, pp. 1–34
  • Hübner F, Bazrafshan B, Roland J, Kickhefel A, Vogl TJ. The influence of Nd:YAG laser irradiation on Fluoroptic® temperature measurement: An experimental evaluation. Laser Med Sci 2013;28:487–96
  • Puccini S, Bär NK, Bublat M, Kahn T, Busse H. Simulation of thermal tissue coagulation and their value for the planning and monitoring of laser-induced interstitial thermotherapy (LITT). Magnet Reson Med 2003;49:351–62
  • Davidson SRH, Vitkin IA, Sherar MD, Whelan WM. Characterization of measurement artefacts in fluoroptic temperature sensors: Implications for laser thermal therapy at 810 nm. Laser Surg Med 2005;36:297–306
  • Bruners P, Pandeya GD, Levit E, Roesch E, Penzkofer T, Isfort P, et al. CT-based temperature monitoring during hepatic RF ablation: Feasibility in an animal model. Int J Hyperther 2012;28:55–61
  • Bydder GM, Kreel L. The temperature dependence of computed tomography attenuation values. J Comput Assist Tomogr 1979;3:506–10
  • Cetas TC. Will thermometric tomography become practical for hyperthermia treatment monitoring? Cancer Res 1984;44:S4805–8
  • Mahnken AH, Bruners P. CT thermometry: Will it ever become ready for use? Int J Clin Pract 2011;65S171:1–2
  • Homolka P, Gahleitner A, Nowotny R. Temperature dependence of HU values for various water equivalent phantom materials. Phys Med Biol 2002;47:2917–23
  • Jenne JW, Bahner M, Spoo J, Huber P, Rastert R, Simiantonakis I, et al. CT online monitoring of HIFU therapy. Ultrason 1997;1997:1377–80
  • Pandeya GD, Greuter MJW, Schmidt B, Flohr T, Oudkerk M. Assessment of thermal sensitivity of CT during heating of liver: An ex vivo study. Brit J Radiol 2012;85:e661–5
  • Pandeya GD, Ganga D, Greuter MJW, De Jong KP, Schmidt B, Flohr T, et al. Feasibility of noninvasive temperature assessment during radiofrequency liver ablation on computed tomography. J Comput Assist Tomogr 2011;35:356–60
  • Pandeya GD, Klaessens JHGM, Greuter MJW, Schmidt B, Flohr T, Van Hillegersberg R, et al. Feasibility of computed tomography based thermometry during interstitial laser heating in bovine liver. Eur Radiol 2011;21:1733–8
  • Bruners P, Levit E, Penzkofer T, Isfort P, Ocklenburg C, Schmidt B, et al. Multi-slice computed tomography: A tool for non-invasive temperature measurement? Int J Hyperthermia 2010;26:359–65
  • Frich L. Non-invasive thermometry for monitoring hepatic radiofrequency ablation. Minim Invasiv Ther Allied Technol 2006;15:18–25
  • Schena E, Saccomandi P, Giurazza F, Caponero MA, Mortato L, Di Matteo FM, et al. Experimental assessment of CT-based thermometry during laser ablation of porcine pancreas. Phys Med Biol 2013;58:5705--16
  • Bowen T, Connor WG, Nasoni RL, Pifer AE, Sholes RR. Measurement of the temperature dependence of the velocity of ultrasound in soft tissue. In: Linzer M, ed. Ultrasonic Tissue Characterization II. Washington, DC: National Bureau of Standards, 1979, pp. 57–61
  • van Dongen KW, Verweij MD. A feasibility study for non-invasive thermometry using non-linear ultrasound. Int J Hyperthermia 2011;27:612–24
  • Hoskins P, Martin K, Thrush A. Diagnostic Ultrasound: Physics and Equipment, 2nd ed. New York: Cambridge University Press, 2010
  • Pearce J, Valvano JW, Emelianov S. Temperature measurement. In: Welch AJ, van Gemert AJC, editors. Optical Thermal Response of Laser Irradiated Tissue. New York, NY: Springer, 2011, pp. 434–44
  • Techavipoo U, Varghese T, Chen Q, Stiles TA, Zagzebski JA, Frank G. Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses. J Acoust Soc Am 2004;115:2859–65
  • Ueno S, Hashimoto M, Fukukita H, Yano T. Ultrasound thermometry in hyperthermia. Proc IEEE Ultrason Symp 1990;1990:1645–52
  • Haney MJ, O’Brien WD Jr. Ultrasonic tomography for differential thermography. Acoust Imag 1982;12:589–97
  • Varghese T, Zagzebski JA, Chen Q, Techavipoo U, Frank G, Johnson C, et al. Ultrasound monitoring of temperature change during radiofrequency ablation: Preliminary in-vivo results. Ultrasound Med Biol 2002;28:321–9
  • Shah J, Aglyamov SR, Sokolov K, Milner TE, Emelianov SY. Ultrasound imaging to monitor photothermal therapy – Feasibility study. Opt Express 2008;16:3776–85
  • Lemor RM, Kleffner BV, Tretbar S, Schmitt RM. Ultrasound temperature and attenuation monitoring for controlling the laser induced thermo therapy. Acoust Imag 2002;25:395–400
  • Bloembergen N, Purcell EM, Pound RV. Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 1948;73:679–712
  • Parker DL, Smith V, Sheldon P, Crooks LE, Fussell L. Temperature distribution measurements in two-dimensional NMR imaging. Med Phys 1983;10:321–5
  • Jolesz FA, Bleier AR, Jakab P, Ruenzel PW, Huttl K, Jako GJ. MR imaging of laser-tissue interactions. Radiology 1988;168:249–53
  • McDannold N. Quantitative MRI-based temperature mapping based on the proton resonant frequency shift: Review of validation studies. Int J Hyperthermia 2005;21:533–46
  • Rieke V, Pauly KB. MR thermometry. J Magn Reson Imaging 2008;27:376–90
  • Plewes DB, Kucharczyk W. Physics of MRI: A primer. J Magn Reson Imaging 2012;35:1038–54
  • Graham SJ, Bronskill MJ, Henkelman RM. Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle. Magn Reson Med 1998;39:198–203
  • Vogl TJ, Straub R, Zangos S, Mack MG, Eichler K. MR-guided laser-induced thermotherapy (LITT) of liver tumours: Experimental and clinical data. Int J Hyperthermia 2004;20:713–24
  • Bazrafshan B, Hübner F, Farshid P, Hammerstingl R, Paul J, Vogel V, et al. Temperature imaging of laser-induced thermotherapy (LITT) by MRI: Evaluation of different sequences in phantom. Lasers Med Sci 1984;31:161–7
  • Hindman JC. Proton resonance shift of water in gas and liquid states. J Chem Phys 1966;44:4582–92
  • Ishihara Y, Calderon A, Watanabe H, Ishihara Y, Calderon A, Watanabe H, et al. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 1995;34:814–23
  • Olsrud J, Wirestam R, Brockstedt S, Nilsson AM, Tranberg KG, Ståhlberg F, et al. MRI thermometry in phantoms by use of the proton resonance frequency shift method: Application to interstitial laser thermotherapy. Phys Med Bio 1998;43:2597–613
  • Rieke V, Vigen KK, Sommer G, Daniel BL, Pauly JM, Butts K. Referenceless PRF shift thermometry. Magn Reson Med 2004;51:1223–31
  • Peters RD, Chan E, Trachtenberg J, Jothy S, Kapusta L, Kucharczyk W, et al. Magnetic resonance thermometry for predicting thermal damage: An application of interstitial laser coagulation in an in vivo canine prostate model. Magn Reson Med 2000;44:873–83
  • Wlodarczyk W, Hentschel M, Wust P, Noeske R, Hosten N, Rinneberg H, et al. Comparison of four magnetic resonance methods for mapping small temperature changes. Phys Med Biol 1999;44:607–24
  • Kickhefel A, Rosenberg C, Roland J, Viallon M, Gross P, Schick F, et al. A pilot study for clinical feasibility of the near-harmonic 2D referenceless PRFS thermometry in liver under free breathing using MR-guided LITT ablation data. Int J Hyperthermia 2012;28:250–66
  • Feng Y, Fuentes D. Model-based planning and real-time predictive control for laser induced thermal therapy. Int J Hyperthermia 2011;27:751–61

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.