2,852
Views
63
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications

, , &
Pages 777-789 | Received 30 Apr 2013, Accepted 13 Aug 2013, Published online: 07 Oct 2013

References

  • Laurent S, Dutz S, Häfeli UO, Mahmoudi M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 2011;166:8–23
  • Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 2008;24:467–74
  • Johannsen M, Thiesen B, Wust P, Jordan A. Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperthermia 2010;26:790–5
  • Hoopes PJ, Tate JA, Ogden JA, Strawbridge R, Fiering SN, Petryk AA, et al. Assessment of intratumor non-antibody directed iron oxide nanoparticle hyperthermia cancer therapy and antibody directed IONP uptake in murine and human cells. Proc SPIE 2009;7181:71810P-1
  • Zhang J, Dewilde AH, Chinn P, Foreman AR, Barry S, Kanne D, et al. Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cancer cells in vitro via hyperthermia. Int J Hyperthermia 2011;27:682–97
  • Marcos-Campos I, Asin L, Torres TE, Marquina C, Tres A, Ibarra MR, et al. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells. Nanotechnology 2011;22:205101
  • Asin L, Ibarra MR, Tres A, Goya GF. Controlled cell death by magnetic hyperthermia: Effects of exposure time, field amplitude, and nanoparticle concentration. Pharm Res 2012;29:1319–27
  • Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011;103:317–24
  • Giustini AJ, Petryk AA, Cassim SM, Tate JA, Baker I, Hoopes JP. Magnetic nanoparticle hyperthermia in cancer treatment. Nano LIFE 2010;1:17–32
  • Lehmann J, Natarajan A, DeNardo GL, Ivkov R, Foreman AR, Catapano C, et al. Nanoparticle thermotherapy and external beam radiation therapy for human prostate cancer cells. Cancer Biother Radiopharm 2008;23:265–71
  • Tietze R, Lyer S, Dürr S, Alexiou C. Nanoparticles for cancer therapy using magnetic forces. Nanomedicine 2012;7:447–57
  • Ren Y, Zhang H, Chen B, Cheng J, Cai X, Liu R, et al. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance. Int J Nanomedicine 2012;7:2261–9
  • Kim M-H, Yamayoshi I, Mathew S, Lin H, Nayfach J, Simon SI. Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection. Ann Biomed Eng 2013;41:598–609
  • Thomas LA, Dekker L, Kallumadil M, Southern P, Wilson M, Nair SP, et al. Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia. J Mater Chem 2009;19:6529–35
  • Franke K, Kettering M, Lange K, Kaiser WA, Hilger I. The exposure of cancer cells to hyperthermia, iron oxide nanoparticles, and mitomycin C influences membrane multidrug resistance protein expression levels. Int J Nanomedicine 2013;8:351–63
  • Grazu V, Silber A, Moros M, Asin L, Torres T, Marquina C, et al. Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections. Int J Nanomedicine 2012;7:5351–60
  • Kopp AF, Laniado M, Dammann F, Stern W, Grönewäller E, Balzer T, et al. MR imaging of the liver with Resovist: Safety, efficacy, and pharmacodynamic properties. Contrast Media 1997;204:749–56
  • Wang Y-XJ. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant Imaging Med Surg 2011;1:35–40
  • van Landeghem FKH, Maier-Hauff K, Jordan A, Hoffmann K-T, Gneveckow U, Scholz R, et al. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 2009;30:52–7
  • Tartaj P, Morales MdP, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2003;36:182–97
  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008;108:2064–110
  • Laurent S, Boutry S, Mahieu I, Elst VL, Muller RN. Iron oxide based MR contrast agents: From chemistry to cell labeling. Curr Med Chem 2009;16:4712–27
  • Pankhurst QA, Thanh NKT, Jones SK, Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2009;42:224001
  • Kumar CS, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 2011;63:789–808
  • Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2007;2:23–39
  • Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res Lett 2008;3:397–415
  • Lodhia J, Mandarano G, Ferris N, EU P, Cowell S. Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI. Biomed Imaging Interv J 2009;6:1–12
  • Takafuji M, Shundo A, Ihara H. Organic layered magnetic nanoparticles. In: Nalwa HS, ed. Magnetic Nanostructures. Stevenson Ranch, CA: American Scientific Publishers, 2009, pp. 603–21
  • Safarik I, Horska K, Safarikova M. Magnetic nanoparticles for biomedicine. In: Prokop A, ed. Intracellular Delivery: Fundamentals and Applications. New York, NY: Springer, 2011, pp. 363–72
  • Qiao R, Yang C, Gao M. Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications. J Mater Chem 2009;19:6274–93
  • Chen B, Wu W, Wang X. Magnetic iron oxide nanoparticles for tumor-targeted therapy. Curr Cancer Drug Targets 2011;11:184–9
  • Hergt R, Andrä W, d’Ambly CG, Hilger I, Kaiser WA, Richter U, et al. Physical limitations of hyperthermia using magnetite fine particles. IEEE Trans Magn 1998;34:3745–54
  • Jordan A, Scholz R, Wust P, Fähling H, Felix R. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mat 1999;201:413–19
  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mat 2002;252:370–4
  • Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, Hamada S, et al. Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials 2005;26:2231–8
  • Verges MA, Costo R, Roca AG, Marco JF, Goya GF, Serna CJ, et al. Uniform and water stable magnetite nanoparticles with diameters around the monodomain- multidomain limit. J Phys D Appl Phys 2008;41:134003
  • Hergt R, Dutz S, Müller R, Zeisberger M. Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 2006;18:S2919–34
  • Molday RS. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J Immunol Meth 1982;52:353–67
  • Stark DD, Weissleder R, Elizondo G, Hahn PF, Saini S, Todd LE, et al. Superparamagnetic iron oxide; clinical application as a contrast agent for MR imaging of the liver. Radiology 1988;168:297–301
  • Weissleder R, Bogdanov A, Neuwelt EA, Papisov M. Long-circulating iron oxides for MR imaging. Adv Drug Deliv Rev 1995;16:321–34
  • Ferguson RM, Minard KR, Khandhar AP, Krishnan KM. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys 2011;38:1619--26
  • Eberbeck D, Dennis CL, Huls NF, Krycka KL, Grüttner C, Westphal F. Multicore magnetic nanoparticles for magnetic particle imaging. IEEE Trans Magn 2013;49:269–74
  • Tassa C, Shaw SY, Weissleder R. Dextran-coated iron oxide nanoparticles: A versatile platform for targeted molecular imaging, molecular diagnostics and therapy. Acc Chem Res 2011;44:842–52
  • Rimkus G, Grüttner C, Bremer-Streck S, Herrmann K-H, Krumbein I, Reichenbach JR, et al. mVCAM-1 specific iron oxide nanoparticles based probes for multimodal imaging purposes. Biomed Tech 2012;57:77–80
  • Ling Y, Pong T, Vassiliou CC, Huang PL, Cima MJ. Implantable magnetic relaxation sensors measure cumulative exposure to cardiac biomarkers. Nature Biotechnol 2011;29:273–7
  • Kallumadil M, Tada M, Nakagawa T, Abe M, Southern P, Pankhurst QA. Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mat 2009;321:1509–13
  • DeNardo SJ, DeNardo GL, Natarajan A, Miers LA, Foreman AR, Grüttner C, et al. Thermal dosimetry predictive of efficacy of 111InChL6 nanoparticle AMF-induced thermoablative therapy for human breast cancer in mice. J Nucl Med 2007;48:437–44
  • Reimers GW, Khalafalla SE, inventors. Production of magnetic fluids by peptization techniques. USA patent US 3,843,540, 1974
  • Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 1981;17:1247–8
  • Fortin J-P, Wilhelm C, Servais J, Menager C, Bacri JC, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 2007;129:2628–35
  • Lefebure S, Dubois E, Cabuil V, Neveu S, Massart R. Monodisperse magnetic nanoparticles: Preparation and dispersion in water and oils. J Mater Res 1998;13:2975–81
  • Rodriguez-Luccioni HL, Latorre-Esteves M, Mendez-Vega J, Soto O, Rodriguez AR, Rinaldi C, et al. Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles. Int J Nanomed 2011;6:373–80
  • Dutz S, Clement JH, Eberbeck D, Gelbrich T, Hergt R, Müller R, et al. Ferrofluids of magnetic multicore nanoparticles for biomedical applications. J Magn Magn Mat 2009;321:1501–4
  • Cheraghipour E, Javadpour S, Mehdizadeh AR. Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. J Biomed Sci Eng 2012;5:715–19
  • Grüttner C, Müller K, Teller J, Westphal F, Foreman AR, Ivkov R. Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy. J Magn Magn Mat 2007;311:181–6
  • Bordelon DE, Cornejo C, Grüttner C, Westphal F, DeWeese TL, Ivkov R. Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields. J Appl Phys 2011;109:124904
  • Li Z, Kawashita M, Araki N, Mitsumori M, Hiraoka M, Doi M. Preparation of magnetic iron oxide nanoparticles for hyperthermia of cancer in a FeCl2-NaNO3-NaOH aqueous system. J Biomater Appl 2011;25:643–61
  • Hyeon T, Lee SS, Park J, Chung Y, Bin Na H. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 2001;123:12798–801
  • Park J, Lee E, Hwang N-M, Kang MK, Kim SC, Hwang Y, et al. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Ed 2005;44:2872–7
  • Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 2002;124:8204–5
  • Levy M, Quarta A, Espinosa A, Figuerola A, Wilhelm C, Garcia-Hernandez M, et al. Correlating magneto-structural properties to hyperthermia performance of highly monodisperse iron oxide nanoparticles prepared by a seeded-growth route. Chem Mater 2011;23:4170–80
  • Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 2004;126:273–9
  • Kim D, Lee N, Park M, Kim BH, An K, Hyeon T. Synthesis of uniform ferrimagnetic magnetite nanocubes. J Am Chem Soc 2009;131:454–5
  • Bae KH, Park M, Do MJ, Lee N, Ryu JH, Kim GW, et al. Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 2012;6:5266–73
  • Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, et al. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 2012;6:3080–91
  • Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 2004;3:891–5
  • Khandhar AP, Ferguson RM, Krishnan KM. Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems. J Appl Phys 2011;109:7B310--7B3103
  • Armijo LM, Brandt YI, Mathew D, Yadav S, Maestas S, Rivera A, et al. Iron oxide nanocrystals for magnetic hyperthermia applications. Nanomaterials 2012;2:134–46
  • Hugounenq P, Levy M, Alloyeau D, Lartigue L, Dubois E, Cabuil V, et al. Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. J Phys Chem C 2012;116:15702–12
  • Lartigue L, Hugounenq P, Alloyeou D, Clarke SP, Levy M, Bacri JC, et al. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 2012;6:10935–49
  • Langevin D. Micelles and microemulsions. Annu Rev Phys Chem 1992;43:341–69
  • Okoli C, Sanchez-Dominguez M, Boutonnet M, Järås S, Civera C, Solans C, et al. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles. Langmuir 2012;28:8479–85
  • Zeng Q, Baker I, Loudis JA, Liao Y, Hoopes PJ, Weaver JB. Fe/Fe oxide nanocomposite particles with large specific absorption rate for hyperthermia. Appl Phys Lett 2007;90:233112
  • Zhang G, Liao Y, Baker I. Surface engineering of core/shell iron/iron oxide nanoparticles from microemulsions for hyperthermia. Mater Sci Eng C Mater Biol Appl 2010;30:92–7
  • Kekalo K, Koo K, Zeitchick E, Baker I. Microemulsion synthesis of iron core/iron oxide shell magnetic nanoparticles and their physicochemical properties. MRS Proc 2012;1416
  • Cassim SM, Giustini AJ, Baker I, Hoopes JP. Development of novel magnetic nanoparticles for hyperthermia cancer therapy. Proc SPIE, Energy-based Treatment of Tissue and Assessment VI 2011;7901:700115
  • Basel MT, Balivada S, Wang H, Shrestha TB, Seo GM, Pyle M, et al. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomed 2012;7:297–306
  • Laurent S, Burtea C, Thirifays C, Rezaee F, Mahmoudi M. Significance of cell ‘observer’ and protein source in nanobiosciences. J Colloid Interface Sci 2013;392:431–45
  • Schweiger C, Hartmann R, Zhang F, Parak WJ, Kissel TH, Rivera Gil P. Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J Nanobiotechnol 2012;10(28):1–11
  • Häfeli UO, Riffle JS, Harris-Shkhawat L, Carmichael-Baranauskas A, Mark F, Daily JP, et al. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 2009;6:1417–28
  • Rimkus G, Bremer-Streck S, Grüttner C, Kaiser WA, Hilger I. Can we accurately quantify nanoparticle associated proteins when constructing high-affinity MRI molecular imaging probes. Contrast Media Mol Imaging 2011;6:119–25
  • Grüttner C, Müller K, Teller J. A rapid assay to measure the shielding of iron oxide cores by the particle shell. IEEE Trans Magn 2013;49:177–81
  • Yoo D, Jeong H, Preihs C, Choi J-S, Shin T-H, Sessler JL, et al. Double-effector nanoparticles: A synergistic approach to apoptotic hyperthermia. Angew Chem Int Ed 2012;51:12482–5
  • Philipse AP, van Bruggen MPB, Pathmamanoharan C. Magnetic silica dispersions: Preparation and stability of surface-modified silica particles with a magnetic core. Langmuir 1994;10:92–9
  • Creixell M, Bohorquez AC, Torres-Lugo M, Rinaldi C. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 2011;5:7124–9
  • Rouhana LL, Schlenoff JB. Aggregation resistant zwitterated superparamagnetic nanoparticles. J Nanopart Res 2012;14:835
  • Nigam S, Barick KC, Bahadur D. Development of citrate-stabilized Fe3O4 nanoparticles: Conjugation and release of doxorubicin for therapeutic applications. J Magn Magn Mat 2011;323:237–43
  • Barick KC, Hassan PA. Glycine passivated Fe3O4 nanoparticles for thermal therapy. J Colloid Interface Sci 2012;369:96–102
  • Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 2004;14:2161–75
  • Aqil A, Vasseur S, Duguet E, Passirani C, Benoit JP, Roch A, et al. PEO coated magnetic nanoparticles for biomedical application. Eur Polymer J 2008;44:3191–9
  • Dan M, Scott DF, Hardy PA, Wydra RJ, Hilt JZ, Yokel RA, et al. Block copolymer cross-linked nanoassemblies improve particle stability and biocompatibility of superparamagnetic iron oxide nanoparticles. Pharm Res 2013;30:552–61
  • Gonzales M, Krishnan KM. Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia. J Magn Magn Mat 2005;293:265–70
  • Gonzales M, Krishnan KM. Phase transfer of highly monodisperse iron oxide nanocrystals with pluronic F127 for biomedical applications. J Magn Magn Mat 2007;311:59–62
  • Gonzales-Weimuller M, Zeisberger M, Krishnan KM. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mat 2009;321:1947–50
  • Chandrasekharan P, Maity D, Yong CX, Chuang K-H, Ding J, Feng S-S. Vitamin E (D-alpha-tocopheryl-co-poly(ethylene glycol) 1000 succinate) micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI. Biomaterials 2011;32:5663–72
  • Hermanson GT. Bioconjugate Techniques. San Diego, CA: Academic Press, 2008
  • Josephson L, Tung C-H, Moore A, Weissleder R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconj Chem 1999;10:186–91
  • Chen T-J, Cheng T-H, Chen C-Y, Hsu SCN, Cheng T-L, Liu G-C, et al. Targeted Herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. J Biol Inorg Chem 2009;14:253–60
  • Lesniak C, Schiestel T, Schmidt H, Jordan A, inventors. Nanoscale particles having an iron oxide-containing core enveloped by at least two shells. USA Patent US 2003/0180370 A1, 2003
  • Lartigue L, Innocenti C, Kalaivani T, Awwad A, del Mar Sanchez Duque M, Guari Y, et al. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties. J Am Chem Soc 2011;133:10459–72
  • Yuan Y, Rende D, Altan CL, Bucak S, Ozisik R, Borca-Tasciuc D-A. Effect of surface modification on magnetization of iron oxide nanoparticle colloids. Langmuir 2012;28:13051–9
  • Gonzalez-Fernandez MA, Torres TE, Andres-Verges M, Costo R, de la Presa P, Serna CJ, et al. Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties. J Solid State Chem 2009;182:2779–84
  • Larumbe S, Gomez-Polo C, Perez-Landazabal JI, Pastor JM. Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles. J Phys Condens Matter 2012;24:266007
  • Dennis CL, Jackson AJ, Borchers JA, Ivkov R, Foreman AR, Hoopes PJ, et al. The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia. J Phys D Appl Phys 2008;41:134020
  • Linh PH, Thach PV, Tuan NA, Thuan NC, Manh DH, Phuc NX, et al. Magnetic fluid based on Fe3O4 nanoparticles: Preparation and hyperthermia application. J Phys Conf Ser 2009;187:012069
  • Pinero-Redondo Y, Banobre-Lopez M, Pardinas-Blanco I, Goya GF, Lopez-Quintela MA, Rivas J. The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res Lett 2011;6:1–7
  • Eggeman AS, Majetich SA, Farrell D, Pankhurst QA. Size and concentration effects on high frequency hysteresis of iron oxide nanoparticles. IEEE Trans Magn 2007;43:2451–3
  • Müller R, Dutz S, Neeb A, Cato ACB, Zeisberger M. Magnetic heating effect of nanoparticles with different sizes and size distributions. J Magn Magn Mat 2013;328:80–5
  • Arruebo M, Valladares M, Gonalez- Fernandez A. Antibody-conjugated nanoparticles for biomedical applications. J Nanomaterials 2009;2009:439389
  • DeNardo SJ, DeNardo GL, Miers LA, Natarajan A, Foreman AR, Grüttner C, et al. Development of tumor targeting bioprobes (111In-Chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res 2005;11:S7087–92
  • Kobayashi T. Cancer hyperthermia using magnetic nanoparticles. Biotechnology J 2011;6:1342–7
  • Kut C, Zhang Y, Hedayati M, Zhou H, Cornejo C, Bordelon DE, et al. Preliminary study of injury from heating systemically delivered, nontargeted dextran-superparamagnetic iron oxide nanoparticles in mice. Nanomedicine 2012;7:1697–711
  • Peng X-H, Qian X, Mao H, Wang AY, Chen ZG, Nie S, et al. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine 2008;3:311–21
  • Rogers WJ, Basu P. Factors regulating macrophage endocytosis of nanoparticles: Implications for targeted magnetic resonance plaque imaging. Artherosclerosis 2005;178:67–73
  • Simberg D, Duza T, Park JH, Essler M, Pilch J, Zhang L, et al. Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci USA 2007;104:932–6
  • Toraya-Brown S, Sheen MR, Baird JR, Barry S, Demidenko E, Turk MJ, et al. Phagocytes mediate targeting of iron oxide nanoparticles to tumors for cancer therapy. Intregr Biol 2013;5:159–71
  • Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 2009;62:284–304
  • Grüttner C, Müller K, Teller J. Comparison of strain-promoted alkyne-azide cycloaddition with established methods for conjugation of biomolecules to magnetic nanoparticles. IEEE Trans Magn 2013;49:172–6
  • Natarajan A, Grüttner C, Ivkov R, DeNardo GL, Mirick G, Yuan A, et al. NanoFerrite particle based radioimmunonanoparticles and in vivo pharmacokinetics. Bioconj Chem 2008;19:1211–18
  • Natarajan A, Xiong C-Y, Grüttner C, DeNardo GL, DeNardo SJ. Development of multivalent radioimmunonanoparticles for cancer imaging and therapy. Cancer Biother Radiopharm 2008;23:82–91
  • Lin P-C, Ueng S-H, Yu S-C, Jan M-D, Adak AK, Yu C-C, et al. Surface modification of magnetic nanoparticle via Cu(I)-catalyzed alkyne-azide [2 + 3] cycloaddition. Org Lett 2007;9:2131–4
  • Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 2008;320:664–7
  • van Hest JCM, van Delft FL. Protein modification by strain-promoted alkyne-azide cycloaddition. Chembiochem 2011;12:1309–12
  • Elias DR, Poloukhtine A, Popik V, Tsourkas A. Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine 2013;9:194–201
  • Colombo M, Sommaruga S, Mazzucchelli S, Polito L, Verderio P, Galeffi P, et al. Site-specific conjugation of ScFvs antibodies to nanoparticles by bioorthogonal strain-promoted alkyne-nitrone cycloaddition. Angew Chem Int Ed 2012;51:496–9
  • Rahim MK, Kota R, Lee S, Haun JB. Bioorthogonal chemistries for nanomaterial conjugation and targeting. Nanotechnol Rev 2013;2:215–27
  • Mi Y, Liu X, Zhao J, Ding J, Feng S-S. Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. Biomaterials 2012;33:7519–29

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.