10,511
Views
251
CrossRef citations to date
0
Altmetric
Review Articles

Physics of heat generation using magnetic nanoparticles for hyperthermia

&
Pages 715-729 | Received 10 May 2013, Accepted 17 Aug 2013, Published online: 16 Oct 2013

References

  • Dewhirst MW, Jones E, Samulski T, Vujaskovic Z, Li C, Prosnitz L. Hyperthermia. In: Kufe DW, Pollock RE, Weichselbaum RE, Bast RC, Gansler TS, editors. Cancer Medicine. 6th ed. Hamilton, BC: Decker; 2003. pp 623–36
  • Zhang Y, Calderwood SK. Autophagy, protein aggregation, and hyperthermia: A mini-review. Int J Hyperthermia 2011;27:409–14
  • Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 2003;19:267–94
  • Horsman MR, Overgaard J. Hyperthermia: A potent enhancer of radiotherapy. Clin Oncol 2007;19:418–26
  • Jones EL, Prosnitz LR, Dewhirst MW, Marcom PK, Hardenbergh PH, Marks LB, et al. Thermochemoradiotherapy improves oxygenation in locally advanced breast cancer. Clin Cancer Res 2004;10:4287–93
  • Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol 2002;3:487–97
  • Krawczyk PM, Eppink B, Essers J, Stap J, Rodermond H, Odijk H, et al. Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci USA 2011;108:9851–6
  • van der Zee J, van Rhoon GC. Cervical cancer: Radiotherapy and hyperthermia. Int J Hyperthermia 2006;22:229–34
  • Van der Zee J, Koper PCM, Jansen RFM, De Winter KAJ, Van Rhoon GC. Re-irradiation and hyperthermia for recurrent breast cancer in the orbital region: A case report. Int J Hyperthermia 2004;20:1–6
  • Hand JW. Physics of electromagnetic energy sources. In: Moros EG, editor. Physics of Thermal Therapy: Fundamentals and Clinical Applications. Boca Raton, FL: CRC Press; 2013. pp 57–74
  • van Rhoon GC. External electromagnetic methods and devices. In: Moros EG, editor. Physics of Thermal Therapy: Fundamentals and Clinical Applications. Boca Raton, FL: CRC Press; 2013. pp 139–58
  • Bull V, ter Haar GR. The physics of ultrasound energy sources. In: Moros EG, editor. Physics of Thermal Therapy: Fundamentals and Clinical Applications. Boca Raton, FL: CRC Press; 2013. pp 75–93
  • Qin Z, Bischof JC. Application of gold nanoparticles (GNP) in laser thermal therapy. In: Moros EG, editor. Physics of Thermal Therapy: Fundamentals and Clinical Applications. Boca Raton, FL: CRC Press; 2013. pp 319–37
  • Brezovich IA. Low frequency hyperthermia: Capacitive and ferromagnetic thermoseed methods. In: Paliwal B, Hetzel FW, Dewhirst MW, editors. Biological, Physical, and Clinical Aspects of Hyperthermia. Medical Physics Monograph 16. Michigan: American Institute of Physics; 1988. pp 82–111
  • Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB. Selective inductive heating of lymph nodes. Ann Surgery 1957;146:596–606
  • Wust P, Gneveckow U, Johannsen M, Böhmer D, Henkel T, Kahmann F, et al. Magnetic nanoparticles for interstitial thermotherapy – Feasibility, tolerance and achieved temperatures. Int J Hyperthermia 2006;22:673–85
  • Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldofner N, Scholz R, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int J Hyperthermia 2005;21:637–47
  • Jordan A, Maier-Hauff K. Magnetic nanoparticles for intracranial thermotherapy. J Nanosci Nanotechnol 2007;7:4604–6
  • Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N, Teichgraeber U, et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 2006;78:7–14
  • Chikazumi S. Physics of Ferromagnetism. 2nd ed. New York: Oxford University Press; 1997. p. 27
  • Polk C. Introduction. In: Barnes FS, Greenebaum B, editors. Biological and Medical Aspects of Electromagnetic Fields. 3rd ed. Boca Raton, FL: CRC Press; 2006. pp xiii–xxvi
  • Atkinson WJ, Brezovich IA, Chakraborty DP. Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng 1984;31:70–5
  • Black DR. Thermoregulation in the presence of radio frequency fields. In: Barnes FS, Greenebaum B, editors. Biological and Medical Aspects of Electromagnetic Fields. 3rd ed. Boca Raton, FL: CRC Press; 2006. pp 215–26
  • Pankhurst Q, Tranh N, Jones S, Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2009;42:22401
  • Andreu I, Natividad E. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int J Hyperthermia 2013;29:739–51
  • Fischer KH, Hertz JA. Spin Glasses. New York: Cambridge University Press; 1991
  • Cheng GJ, Romero D, Fraser GT, Walker ARH. Magnetic-field-induced assemblies of cobalt nanoparticles. Langmuir 2005;21:12055–9
  • Hubert A, Schäfer R. Magnetic Domains – The Analysis of Magnetic Microstructures. Berlin: Springer; 1998
  • Dormann JL, Fiorani D, Tronc E. Magnetic relaxation in fine-particle systems. In: Prigogine I, Rice SA, editors. Advances in Chemical Physics, Vol. 98. New York: Wiley; 1997. pp 283–494
  • Neel L. Théorie du trainage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann Géophys 1949;5:99–136
  • Neel L. Influence of thermal fluctuations on the magnetization of ferromagnetic small particles. CR Acad Sci 1949;228:664–8
  • Krycka KL, Booth RA, Hogg CR, Ijiri Y, Borchers JA, Chen WC, et al. Core-shell magnetic morphology of structurally uniform magnetite particles. Phys Rev Lett 2010;104:207203
  • Sousa EC, Rechenberg HR, Depeyrot J, Gomes JA, Aquino R, Tourinho FA, et al. In-field Mossbauer study of disordered surface spins in core/shell ferrite nanoparticles. J Appl Phys 2009;106:093901
  • Bakuzis AF, Morais PC, Pelegrini F. Surface and exchange anisotropy fields in MnFe2O4 nanoparticles: Size and temperature effects. J Appl Phys 1999;85:7480–2
  • Noh SH, Na W, Jang JT, Lee JH, Lee EJ, Moon SH, et al. Nanoscale magnetism control via surface and exchange anisotropy for optimized ferromagnetic hysteresis. Nano Lett 2012;12:3716–21
  • Margaris G, Trohidou K, Kachkachi H. Surface effects on the magnetic behavior of nanoparticle assemblies. Phys Rev B 2012;85:024419
  • Hu Y, Du A. The core-shell separation of ferromagnetic nanoparticles with strong surface anisotropy. J Nanosci Nanotech 2009;9:5829–33
  • Reilly JP. Magnetic field excitation of peripheral nerves and the heart: A comparison of thresholds. Med Biol Eng Comput 1991;29:571–9
  • Haveman J, Van der Zee J, Wondergem J, Hoogeveen JF, Hulshof MCCM. Effects of hyperthermia on the peripheral nervous system: A review. Int J Hyperthermia 2004;20:371–91
  • Martinez JA, Mork BA. Transformer modeling for low- and mid-frequency transients – A review. IEEE Trans Power Del 2005;20:1625–32
  • Donahue MJ, Porter DG. OOMMF User's Guide, Version 1.0. Interagency Report NISTIR 6376. Gaitherburg, MD: National Institute of Standards and Technology; 1999
  • Thompson MT. Simple models and measurements of magnetically induced heating effects in ferromagnetic fluids. IEEE Trans Magn 1998;34:3755–64
  • Banerjee R, Katsenovich Y, Lagos L, McIintosh M, Zhang X, Li C-Z. Nanomedicine: Magnetic nanoparticles and their biomedical applications. Curr Med Chem 2010;17:3120–41
  • Coffey WT, Kalmykov YP. Thermal fluctuations of magnetic nanoparticles: Fifty years after Brown. J Appl Phys 2012;112:121301
  • Cullity BD, Graham CD. Introduction to Magnetic Materials; 2nd ed. Hoboken, New Jersey: Wiley; 2009. p 93
  • Cullity BD, Graham CD. Introduction to Magnetic Materials; 2nd ed. Hoboken, New Jersey: Wiley; 2009. p 106
  • Dennis CL, Borges RP, Gregg JF, Jouguelet E, Ounadjela K, Petej I, Thornton MJ. The defining length scales of mesomagnetism: A review. J Phys Cond Matt 2002;14:R1175–262
  • Eggeman AS, Majetich SA, Farrell D, Pankhurst QA. Size and concentration effects on high frequency hysteresis of iron oxide nanoparticles. IEEE Trans Magn 2007;43:2451–3
  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 2002;252:370–4
  • Hergt R, Dutz S. Magnetic particle hyperthermia – Biophysical limitations of a visionary tumor therapy. J Magn Magn Mater 2007;311:187–92
  • Bordelon DE, Cornejo C, Gruttner C, Westphal F, DeWeese TL, Ivkov R. Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields. J Appl Phys 2011;109:124904
  • Eberbeck D, Dennis CL, Huls NF, Krycka KL, Grüttner C, Westphal F. Multicore magnetic nanoparticle for magnetic particle imaging. IEEE Trans Magn 2013;49:269–74
  • Déjardin P-M, Kalmykov YP. Relaxation of the magnetization in uniaxial single-domain ferromagnetic particles driven by a strong ac magnetic field. J Appl Phys 2009;106:123908
  • Carrey J, Mehdaoui B, Respaud M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J Appl Phys 2011;109:083921
  • Einstein A. The motion of elements suspended in static liquids as claimed in the molecular kinetic theory of heat. Ann Phys Berlin 1905;17:549–60
  • Perrin J. Molecular agitation and the Brownian movement. CR Hebd Seances Acad Sci Paris 1908;146:967–70
  • Branquinho LC, Carrião MS, Costa AS, Zufelato N, Sousa MH, Miotto R, et al. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia. Nat Nanotechnol 2013;submitted
  • Rantschler JO, McMichael RD, Castillo A, Shapiro AJ, Egelhoff WF Jr, Maranville BB, et al. Effect of 3D, 4D, and 5D transition metal doping on damping in permalloy thin films. J Appl Phys 2007;101:033911
  • Kashevsky BE, Kashevsky SB, Prokhorov IV. Dynamic magnetic hysteresis in a liquid suspension of acicular maghemite particles. Particuology 2009;7:451–8
  • Sohn H, Victora RH. Optimization of magnetic anisotropy and applied fields for hyperthermia applications. J Appl Phys 2010;107:09B312
  • Brown WF Jr. Thermal fluctuations of a single domain particle. Phys Rev 1963;130:1677
  • Landi GT, Bakuzis AF. On the energy conversion efficiency in magnetic hyperthermia applications: A new perspective to analyze the departure from the linear regime. J Appl Phys 2012;111:083915
  • Dennis CL, Jackson AJ, Borchers JA, Ivkov R, Foreman AR, Lau JW, et al. The influence of collective behavior on the magnetic and heating properties of iron oxide nanoparticles. J Appl Phys 2008;103:07A319
  • Dennis CL, Jackson AJ, Borchers JA, Ivkov R, Foreman AR, Hoopes PJ, et al. The influence of magnetic and physiological behavior on the effectiveness of iron oxide nanoparticles for hyperthermia. J Phys D Appl Phys 2008;41:134020
  • Dennis CL, Jackson AJ, Borchers JA, Hoopes PJ, Strawbridge R, Foreman AR, et al. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology 2009;20:395103
  • Krycka KL, Jackson AJ, Borchers JA, Shih J, Briber R, Ivkov R, et al. Internal magnetic structure of dextran coated magnetite nanoparticles in solution using small angle neutron scattering with polarization analysis. J Appl Phys 2011;109:07B513
  • Grüttner C, Müller K, Teller J, Westphal F, Foreman A., Ivkov R. Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy. J Magn Magn Mater 2007;311:181–6
  • Dutz S, Kettering M, Hilger I, Müller R, Zeisberger M. Magnetic multicore nanoparticles for hyperthermia – Influence of particle immobilization in tumour tissue on magnetic properties. Nanotechnology 2011;22:265102
  • Lartigue L, Hugounenq P, Alloyeau D, Clarke SP, Levy M, Bacri JC, et al. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 2012;6:10935–49
  • Verde EL, Landi GT, Gomes JA, Sousa MH, Bakuzis AF. Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: Comparison between experiment, linear response theory, and dynamic hysteresis simulations. J Appl Phys 2012;111:123902
  • Hedayati M, Attaluri A, Bordelon D, Goh R, Armour M, Zhou H, et al. New iron-oxide particles for magnetic nanoparticle hyperthermia: An in-vitro and in-vivo pilot study. Proc SPIE 2013;8584:858404
  • Ivkov R. Magnetic nanoscale particle compositions, and therapeutic methods related thereto. US Patent 7,731,648
  • Dennis CL, Jackson AJ, Borchers JA, Gruettner C, Ivkov R. Correlation of physical structure with magnetic anisotropy in magnetic nanoparticle colloids. Nanotechnology 2013;submitted
  • Guistini AJ, Ivkov R, Hoopes PJ. Magnetic nanoparticle biodistribution following intratumoral administration. Nanotechnology 2011;22:345101
  • Kryder MH, Gage EC, McDaniel TW, Challener WA, Rottmayer RE, Ju G, et al. Heat assisted magnetic recording. Proc IEEE 2008;96:1810–35
  • Dobrotă C-I, Stancu A. What does a first-order reversal curve diagram really mean? A study case: Array of ferromagnetic nanowires. J Appl Phys 2013;113:043928
  • Kashevsky BE, Prokhorov IV, Kashevsky SB. Audio-frequency heating of particulate magnetic systems. China Particuology 2007;5:84–92
  • Jacobs IS, Bean CP. An approach to elongated fine-particle magnets. Phys Rev 1955;100:1060–7
  • Raikher YL, Stepanov VI. Dynamic hysteresis of a superparamagnetic nanoparticle at low-to-intermediate frequencies. J Magn Magn Mater 2006;300:e311–14
  • Blums EJ, Maiorov MM, Cebers AO. 5th International Conference on Magnetic fluids. Riga: USSR Academy of Sciences, Latvian SSR Academy of Sciences, Institute of Physics; 1989. p. 24
  • Roberts AP, Chang L, Heslop D, Florindo F, Larrasoana JC. Searching for single domain magnetite in the ‘pseudo-single-domain’ sedimentary haystack: Implications of biogenic magnetite preservation for sediment magnetism and relative paleointensity determinations. J Geophys Res Solid Earth 2012;117:B08104
  • Kodama K. Application of broadband alternating current magnetic susceptibility to the characterization of magnetic nanoparticles in natural materials. J Geophys Res Solid Earth 2013;118:1
  • Carvallo C, Sainctavit P, Arrio M-A, Guyodo Y, Penn RL, Forsberg B, et al. Self-reversal of magnetization in oceanic submarine basalts studied with XMCD. Geophys Res Lett 2010;37:L11306
  • Özdemir O, Dunlop DJ, Berquó TS. Morin transition in hematite: Size dependence and thermal hysteresis. Geochem Geophys Geosys 2008;9:Q10Z01
  • Wang H, Kent DV, Jackson MJ. Evidence for abundant isolated magnetic nanoparticles at the Paleocene–Eocene boundary. Proc Natl Acad Sci 2013;110:425–30
  • Williams W, Evans ME, Krása D. Micromagnetics of paleomagnetically significant mineral grains with complex morphology. Geochem Geophys Geosys 2010;11:Q02Z14
  • Moskowitz BM, Banerjee SK. Grain size limits for pseudosingle domain behavior in magnetite: Implications for paleomagnetism. IEEE Trans Magn 1979;15:1241--6
  • Yu Y, Tauxe L, Moskowitz BM. Temperature dependence of magnetic hysteresis. Geochem Geophys Geosys 2004;5:Q06H11
  • Paterson GA. The effects of anisotropic and non-linear thermoremanent magnetization on Thellier-type paleointensity data. Geophys J Int 2013;193:694–710
  • Ayoub NY, El-Hilo M, Laham N, Chantrell RW, Popplewell J. The effect of various particle-size distributions on the initial susceptibility of a textured fine particle system. J Phys D Appl Phys 1988;21:1291
  • Mehdaoui B, Meffre A, Carrrey J, Lachaize S, Lacroix L-M, Gougeon M, et al. Optimal size of nanoparticles for magnetic hyperthermia: A combined theoretical and experimental study. Adv Funct Mater 2011;21:4573–81
  • Purushotham S, Ramanujan RV. Modeling the performance of magnetic nanoparticles in multimodal cancer therapy. J Appl Phys 2010;107:114701
  • Hergt R, Andrä W, d’Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt HG. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn 1998;43:3745–54
  • Mehdaoui B, Meffre A, Lacroix L-M, Carrey J, Lachaize S, Respaud M, et al. Magnetic anisotropy determination and magnetic hyperthermia properties of small Fe nanoparticles in the superparamagnetic regime. J Appl Phys 2010;107:09A324
  • Goya GF, Berquó TS, Fonseca FC, Morales MP. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 2003;94:3520--8
  • Demortière A, Panissod P, Pichon BP, Pourroy G, Guillon D, Donnio B, Bégin-Colin S. Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale 2011;3:225–32
  • Mamiya H, Jeyadevan B. Hyperthermic effects of dissipative structure of magnetic nanoparticles in large alternating magnetic fields. Sci Rep 2011;1:157

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.