2,335
Views
70
CrossRef citations to date
0
Altmetric
Review Articles

Cell death induced by AC magnetic fields and magnetic nanoparticles: Current state and perspectives

, &
Pages 810-818 | Received 15 May 2013, Accepted 22 Aug 2013, Published online: 16 Oct 2013

References

  • Pescatori M, Bedognetti D, Venturelli E, Menard-Moyon C, Bernardini C, Muresu E, et al. Functionalized carbon nanotubes as immunomodulator systems. Biomaterials 2013;34:4395–403
  • Yang M, Cheng K, Qi S, Liu H, Jiang Y, Jiang H, et al. Affibody modified and radiolabeled gold–iron oxide hetero-nanostructures for tumor PET, optical and MR imaging. Biomaterials 2013;34:2796–806
  • Hou S, Zhao H, Zhao L, Shen Q, Wei KS, Suh DY, et al. Capture and stimulated release of circulating tumor cells on polymer-grafted silicon nanostructures. Adv Mater 2013;25:1547–51
  • Etoc F, Lisse D, Bellaiche Y, Piehler J, Coppey M, Dahan M. Subcellular control Rac-GTPase signalling by magnetogenetic manipulation inside living cells. Nat Nanotechnol 2013;8:193–8
  • Verma A, Uzun O, Hu Y, Hu Y, Han H-S, Watson N, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 2013;12:376 [Erratum]
  • Li Y, Cui R, Zhang P, Chen B-B, Tian Z-Q, Li L, et al. Mechanism-oriented controllability of intracellular quantum dots formation: The role of glutathione metabolic pathway. ACS Nano 2013;7:2240–8
  • Shim W, Paik MJ, Duc-Toan N, Lee J-K, Lee Y, Kim J-H, et al. Analysis of changes in gene expression and metabolic profiles induced by silica-coated magnetic nanoparticles. ACS Nano 2012;6:7665–80
  • Goya GF, Grazu V, Ibarra MR. Magnetic nanoparticles for cancer therapy. Curr Nanosci 2008;4:1–16
  • Glazer ES, Curley SA. The ongoing history of thermal therapy for cancer. Surg Oncol Clin N Am 2011;20:229--35
  • Storm FK, Baker HW, Scanlon EF, Plenk HP, Meadows PM, Cohen SC, et al. Magnetic-induction hyperthermia. Results of a 5-year multi-institutional national cooperative trial in advanced cancer patients. Cancer 1985;55:2677–87
  • Bicher HI, Sandhu TS, Hetzel FW. Hyperthermia and radiation in combination: A clinical fractionation regime. Int J Radiat Oncol Biol Phys 1980;6:867–70
  • Arcangeli G, Cividalli A, Mauro F, Nervi C, Pavin G. Enhanced effectiveness of adriamycin and bleomycin combined with local hyperthermia in neck node metastases from head and neck cancers. Tumori 1979;65:481–6
  • Pettigrew RT, Ludgate CM, Smith AN. Proceedings: The effect of whole body hyperthermia in advanced cancer. Br J Cancer 1974;30:179
  • Radiation AGoN-i. Health Effects from Radiofrequency Electromagnetic Fields – RCE 20. London: Centre for Radiation, Chemical and Environmental Hazards, 2012
  • Silver RK, Summers A, Coriell LL, Lehr HB, Greene AE. Use of dielectric heating (shortwave diathermy) in thawing frozen suspensions of tissue culture cells. Proc Soc Exp Biol Med 1964;115:453–5
  • Mann S. Assessing personal exposures to environmental radiofrequency electromagnetic fields. Comptes Rendus Physique 2010;11:541–55
  • Viel JF, Tiv M, Moissonnier M, Cardis E, Hours M. Variability of radiofrequency exposure across days of the week: A population-based study. Environ Res 2011;111:510–3
  • Mueller M. Technical standards – The market and radio-frequency allocation. Telecommun Policy 1988;12:42–56
  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 2002;252:370–4
  • Carrey J, Mehdaoui B, Respaud M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J Appl Phys 2011;109:083921
  • Usov NA, Liubimov BY. Dynamics of magnetic nanoparticle in a viscous liquid: Application to magnetic nanoparticle hyperthermia. J Appl Phys 2012;112:023901
  • Lima E Jr, Torres TE, Rossi LM, Rechenberg HR, Berquo TS, Ibarra A, et al. Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles. J Nanopart Res 2013;15:1654
  • Usov NA. Low frequency hysteresis loops of superparamagnetic nanoparticles with uniaxial anisotropy. J Appl Phys 2010;107:123909
  • Kallumadil M, Tada M, Nakagawa T, Abe M, Southern P, Pankhurst QA. Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 2009;321:1509–13
  • Hilger I, Kaiser WA. Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine 2012;7:1443–59
  • Araya T, Kasahara K, Nishikawa S, Kimura H, Sone T, Nagae H, et al. Antitumor effects of inductive hyperthermia using magnetic ferucarbotran nanoparticles on human lung cancer xenografts in nude mice. Onco Targets Ther 2013;6:237–42
  • Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol 2002;3:487–97
  • Soares PI, Ferreira IM, Igreja RA, Novo CM, Borges JP. Application of hyperthermia for cancer treatment: Recent patents review. Recent Pat Anticancer Drug Discov 2012;7:64–73
  • San BH, Moh SH, Kim KK. Investigation of the heating properties of platinum nanoparticles under a radiofrequency current. Int J Hyperthermia 2013;29:99–105
  • Li X-H, Rong P-F, Jin H-K, Wang W, Tang J-T. Magnetic fluid hyperthermia induced by radiofrequency capacitive field for the treatment of transplanted subcutaneous tumors in rats. Exper Ther Med 2012;3:279–84
  • Kulshrestha P, Gogoi M, Bahadur D, Banerjee R. In vitro application of paclitaxel loaded magnetoliposomes for combined chemotherapy and hyperthermia. Colloids Surf B Biointerfaces 2012;96:1–7
  • Hernandez R, Sacristan J, Asin L, Torres TE, Ibarra MR, Goya GF, et al. Magnetic hydrogels derived from polysaccharides with improved specific power absorption: Potential devices for remotely triggered drug delivery. J Phys Chem B 2010;114:12002–7
  • Meenach SA, Otu CG, Anderson KW, Hilt JZ. Controlled synergistic delivery of paclitaxel and heat from poly(beta-amino ester)/iron oxide-based hydrogel nanocomposites. Int J Pharm 2012;427:177–84
  • Alvarez-Berrios MP, Castillo A, Mendez J, Soto O, Rinaldi C, Torres-Lugo M. Hyperthermic potentiation of cisplatin by magnetic nanoparticle heaters is correlated with an increase in cell membrane fluidity. Int J Nanomed. 2013;8:1003–13
  • Sato A, Tamura Y, Sato N, Yamashita T, Takada T, Sato M, et al. Melanoma-targeted chemo-thermo-immuno (CTI)-therapy using N-propionyl-4-S-cysteaminylphenol-magnetite nanoparticles elicits CTL response via heat shock protein-peptide complex release. Cancer Sci 2010;101:1939–46
  • Ito A, Matsuoka F, Honda H, Kobayashi T. Heat shock protein 70 gene therapy combined with hyperthermia using magnetic nanoparticles. Cancer Gene Ther 2003;10:918–25
  • Estevanato LLC, Da Silva JR, Falqueiro AM, Mosiniewicz-Szablewska E, Suchocki P, Tedesco AC, et al. Co-nanoencapsulation of magnetic nanoparticles and selol for breast tumor treatment: In vitro evaluation of cytotoxicity and magnetohyperthermia efficacy. Int J Nanomed 2012;7:5287–99
  • Zhang JP, Dewilde AH, Chinn P, Foreman A, Barry S, Kanne D, et al. Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia. Int J Hyperthermia 2011;27:682–97
  • Wang LF, Dong J, Ouyang WW, Wang XW, Tang JT. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles. Oncol Rep 2012;27:719–26
  • Bae KH, Park M, Do MJ, Lee N, Ryu JH, Kim GW, et al. Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 2012;6:5266–73
  • Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, et al. High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. ACS Appl Mater Interfaces 2010;2:1903–11
  • Ortner V, Kaspar C, Halter C, Toellner L, Mykhaylyk O, Walzer J, et al. Magnetic field-controlled gene expression in encapsulated cells. J Control Release 2012;158:424–32
  • Goya GF, Lima E, Jr. Arelaro AD, Torres T, Rechenberg HR, Rossi L, et al. Magnetic hyperthermia with Fe3O4 nanoparticles: The influence of particle size on energy absorption. IEEE Trans Magn 2008;44:4444–7
  • Ge Y, Zhang Y, Xia J, Ma M, He S, Nie F, et al. Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro. Colloids Surf B Biointerfaces 2009;73:294–301
  • Fayol D, Luciani N, Lartigue L, Gazeau F, Wilhelm C. Managing magnetic nanoparticle aggregation and cellular uptake: A precondition for efficient stem-cell differentiation and MRI tracking. Adv Healthcare Mater 2013;2:313–25
  • Baba D, Seiko Y, Nakanishi T, Zhang H, Arakaki A, Matsunaga T, et al. Effect of magnetite nanoparticles on living rate of MCF-7 human breast cancer cells. Colloids Surf B Biointerfaces 2012;95:254–7
  • Gudoshnikov SA, Liubimov BY, Popova AV, Usov NA. The influence of a demagnetizing field on hysteresis losses in a dense assembly of superparamagnetic nanoparticles. J Magn Magn Mater 2012;324:3690–4
  • Spiro IJ, Denman DL, Dewey WC. Effect of hyperthermia on isolated DNA polymerase-beta. Radiat Res 1983;95:68–77
  • Sapareto SA, Dewey WC. Thermal dose determination in cancer-therapy. Int J Radiat Oncol Biol Phys 1984;10:787–800
  • Pearce JA. Comparative analysis of mathematical models of cell death and thermal damage processes. Int J Hyperthermia 2013;29:262–80
  • Goya GF, Marcos-Campos I, Fernández-Pacheco R, Sáez B, Godino J, Asín L, et al. Dendritic cell uptake of iron-based magnetic nanoparticles. Cell Biol Int 2008;32:1001–5
  • Fortin JP, Gazeau F, Wilhelm C. Intracellular heating of living cells through Neel relaxation of magnetic nanoparticles. Eur Biophys J Biophys Lett 2008;37:223–8
  • Beaune G, Levy M, Neveu S, Gazeau F, Wilhelm C, Menager C. Different localizations of hydrophobic magnetic nanoparticles within vesicles trigger their efficiency as magnetic nano-heaters. Soft Matter 2011;7:6248–54
  • Sadhukha T, Niu L, Wiedmann TS, Panyam J. Effective elimination of cancer stem cells by magnetic hyperthermia. Mol Pharm 2013;10:1432–41
  • Liu JY, Zhao LY, Wang YY, Li DY, Tao D, Li LY, et al. Magnetic stent hyperthermia for esophageal cancer: An in vitro investigation in the ECA-109 cell line. Oncol Rep 2012;27:791–7
  • Rodriguez-Luccioni HL, Latorre-Esteves M, Mendez-Vega J, Soto O, Rodriguez AR, Rinaldi C, et al. Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles. Int J Nanomed 2011;6:373–80
  • Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, et al. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Magn Magn Mater 1999;194:185–96
  • Wilhelm C, Fortin JP, Gazeau F. Tumour cell toxicity of intracellular hyperthermia mediated by magnetic nanoparticles. J Nanosci Nanotechnol 2007;7:2933–7
  • Jadhav NV, Prasad AI, Kumar A, Mishra R, Dhara S, Babu KR, et al. Synthesis of oleic acid functionalized FeO magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloid Surf B Biointerfaces 2013;108C:158–68
  • Creixell M, Bohorquez AC, Torres-Lugo M, Rinaldi C. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 2011;5:7124–9
  • Villanueva A, de la Presa P, Alonso JM, Rueda T, Martinez A, Crespo P, et al. Hyperthermia HeLa cell treatment with silica-coated manganese oxide nanoparticles. J Phys Chem C 2010;114:1976–81
  • Thomas OC, Hedayati M, Zhou H, Zheng Y, Wabler M, Mihalic J, et al. Thermal and non-thermal effects of membrane bound ferromagnetic nanoparticles. Int J Radiat Oncol Biol Phys 2011;81:S749–50
  • Marcos-Campos I, Asin L, Torres TE, Marquina C, Tres A, Ibarra MR, et al. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells. Nanotechnology 2011;22:205101
  • Asin L, Goya GF, Tres A, Ibarra MR. Induced cell toxicity originates dendritic cell death following magnetic hyperthermia treatment. Cell Death Dis 2013;4:e596
  • Asin L, Ibarra MR, Tres A, Goya GF. Controlled cell death by magnetic hyperthermia: Effects of exposure time, field amplitude, and nanoparticle concentration. Pharm Res 2012;29:1319–27
  • Pilla AA. Nonthermal electromagnetic fields: From first messenger to therapeutic applications. Electromagn Biol Med 2013;32:123–36
  • Pilla A, Fitzsimmons R, Muehsam D, Wu J, Rohde C, Casper D. Electromagnetic fields as first messenger in biological signaling: Application to calmodulin-dependent signaling in tissue repair. Biochim Biophys Acta 2011;1810:1236–45
  • Hedayati M, Thomas O, Abubaker-Sharif B, Zhou H, Cornejo C, Zhang Y, et al. The effect of cell cluster size on intracellular nanoparticle-mediated hyperthermia: Is it possible to treat microscopic tumors? Nanomedicine 2013;8:29–41
  • Csoboz B, Balogh GE, Kusz E, Gombos I, Peter M, Crul T, . Membrane fluidity matters: Hyperthermia from the aspects of lipids and membranes. Int J Hyperthermia 2013;29:491–9
  • Carrey J, Connord V, Respaud M. Ultrasound generation and high-frequency motion of magnetic nanoparticles in an alternating magnetic field: Toward intracellular ultrasound therapy? Appl Phys Lett 2013;102:232404
  • Sadhukha T, Wiedmann TS, Panyam J. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 2013;34:5163–71
  • Lin M, Zhang D, Huang J, Zhang J, Xiao W, Yu H, et al. The anti-hepatoma effect of nanosized Mn–Zn ferrite magnetic fluid hyperthermia associated with radiation in vitro and in vivo. Nanotechnology 2013;24:0957–4484
  • Araya T, Kasahara K, Nishikawa S, Kimura H, Sone T, Nagae H, et al. Antitumor effects of inductive hyperthermia using magnetic ferucarbotran nanoparticles on human lung cancer xenografts in nude mice. Onco Targets Ther 2013;6:237–42
  • Bubnovskaya L, Belous A, Solopan A, Podoltsev A, Kondratenko I, Kovelskaya A, et al. Nanohyperthermia of malignant tumors. II. In vivo tumor heating with manganese perovskite nanoparticles. Exp Oncol 2012;34:336–9
  • Lin M, Huang J, Zhang J, Wang L, Xiao W, Yu H, et al. The therapeutic effect of PEI-Mn0.5Zn0.5Fe2O4 nanoparticles/pEgr1-HSV-TK/GCV associated with radiation and magnet-induced heating on hepatoma. Nanoscale 2013;5:991–1000
  • Ren Y, Zhang H, Chen B, Cheng J, Cai X, Liu R, et al. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance. Int J Nanomed 2012;7:2261–9
  • Tang QS, Chen DZ, Xue WQ, Xiang JY, Gong YC, Zhang L, et al. Preparation and biodistribution of 188Re-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re-folate-CDDP/HSA MNPs) in vivo. Int J Nanomedicine 2011;6:3077–85

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.