1,693
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Reusable heat-sensitive phantom for precise estimation of thermal profile in hyperthermia application

, , &
Pages 66-74 | Received 04 Jul 2013, Accepted 09 Oct 2013, Published online: 28 Nov 2013

References

  • Chou CK, Chen GW, Guy AW, Luk KH. Formulas for preparing phantom muscle tissue at various radiofrequencies. Bioelectromagnetics 1984;5:435–41
  • Kato H, Ishida T. Development of an agar phantom adaptable for simulation of various tissues in the range 5–40 MHz. Phys Med Biol 1987;32:221–6
  • Ito K, Furuya K, Okano Y, Hamada L. Development and characteristics of a biological tissue-equivalent phantom for microwaves. Electron Comm Jpn 2001;84:67–77
  • Takimoto T, Onishi T, Saito K, Takahashi M, Uebayashi S, Ito K. Evaluation on biological tissue equivalent agar-based solid phantoms up to 10 GHz – Aiming at measurement of characteristics of antenna for UWB communications. In: Proceedings of the International Symposium on Antennas and Propagation, 2005, Seoul, South Korea, August 3–5. New York: IEEE, 2005, pp. 483–6
  • Liu Z, Ahmed M, Weinstein Y, Yi M, Mahajan RL, Goldberg SN. Characterization of the RF ablation-induced ‘oven effect’: The importance of background tissue thermal conductivity on tissue heating. Int J Hyperthermia 2006;22:327–42
  • Ortega R, Téllez A, Leija L, Vera A. Measurement of ultrasonic properties of muscle and blood biological phantoms. Phys Procedia 2010;3:627–34
  • Siddiqi AK, Cho S. Agar-based heat-sensitive gel with linear thermal response over 65–80 °C. J Therm Anal Calorim 2013;111:1805–9
  • Mylonopoulou E, Bazán-Peregrino M, Arvanitis CD, Coussios CC. A non-exothermic cell-embedding tissue-mimicking material for studies of ultrasound-induced hyperthermia and drug release. Int J Hyperthermia 2013;29:133–44
  • Gasselhuber A, Dreher MR, Partanen A, Yarmolenko PS, Woods D, Wood BJ, et al. Targeted drug delivery by high intensity focused ultrasound mediated hyperthermia combined with temperature-sensitive liposomes: Computational modelling and preliminary in vivo validation. Int J Hyperthermia 2012;28:337–48
  • Bini MG, Ignesti A, Millanta L, Olmi R, Rubino N, Vanni R. The polyacrylamide as a phantom material for electromagnetic hyperthermia studies. IEEE Trans Biomed Eng 1984;31:317–22
  • Surowiec A, Shrivastava PN, Astrahan M, Petrovich Z. Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators. Int J Hyperthermia 1992;8:795–807
  • Davidson SR, Sherar MD. Measurement of the thermal conductivity of polyacrylamide tissue-equivalent material. Int J Hyperthermia 2003;19:551–62
  • Bazrafshan B, Hubner F, Farshid P, Larson MC, Vogel V, Mantele W, et al. A liver-mimicking MRI phantom for thermal ablation experiments. Med Phys 2011;38:2674–84
  • Stauffer PR, Rossetto F, Prakash M, Neuman DG, Lee T. Phantom and animal tissues for modelling the electrical properties of human liver. Int J Hyperthermia 2003;19:89–101
  • Ozen S, Koylu H. Phantom model of human brain tissue for cellular phone frequencies in electromagnetic field radiation absorption studies. GU J Sci 2005;18:193–200
  • Prakash P, Converse MC, Mahvi DM, Webster JG. Measurement of the specific heat capacity of liver phantom. Physiol Meas 2006;27:N41–6
  • Marchal C, Nadi M, Tosser AJ, Roussey C, Gaulard ML. Dielectric properties of gelatine phantoms used for simulations of biological tissues between 10 and 50 MHz. Int J Hyperthermia 1989;5:725–32
  • Lazebnik M, Madsen EL, Frank GR, Hagness SC. Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Phys Med Biol 2005;50:4245–58
  • Lindner U, Lawrentschuk N, Weersink RA, Raz O, Hlasny E, Sussman MS, et al. Construction and evaluation of an anatomically correct multi-image modality compatible phantom for prostate cancer focal ablation. J Urol 2010;184:352–7
  • Yuan Y, Wyatt C, Maccarini P, Stauffer P, Craciunescu O, Macfall J, et al. A heterogeneous human tissue mimicking phantom for RF heating and MRI thermal monitoring verification. Phys Med Biol 2012;57:2021–37
  • King RL, Herman BA, Maruvada S, Wear KA, Harris GR. Development of a HIFU phantom. Proc AIP Conf 2007;911:351–6
  • Kato H, Yoshimura K, Kuroda M, Yoshida A, Hanamoto K, Kawasaki S, et al. Development of a phantom compatible for MRI and hyperthermia using carrageenan gel – Relationship between dielectric properties and NaCl concentration. Int J Hyperthermia 2004;20:529–38
  • Yoshida A, Kato H, Kuroda M, Hanamoto K, Yoshimura K, Shibuya K, et al. Development of a phantom compatible for MRI and hyperthermia using carrageenan gel-relationship between T1 and T2 values and NaCl concentration. Int J Hyperthermia 2004;20:803–14
  • Fisher JW, Rylander MN. Effective cancer laser-therapy design through the integration of nanotechnology and computational treatment planning models. In: Proceedings of SPIE, Plasmonics in Biology and Medicine V, 2008, San Jose, CA, January 21–2. Bellingham, WA: SPIE Press, 2008, p. 68690D
  • Sarkar S, Gurjarpadhye AA, Rylander CG, Nichole Rylander M. Optical properties of breast tumor phantoms containing carbon nanotubes and nanohorns. J Biomed Opt 2011;16:051304–11
  • Sarkar S, Zimmermann K, Leng W, Vikesland P, Zhang J, Dorn H, et al. Measurement of the thermal conductivity of carbon nanotube – Tissue phantom composites with the hot wire probe method. Ann Biomed Eng 2011;39:1745–58
  • McDonald M, Lochhead S, Chopra R, Bronskill MJ. Multi-modality tissue-mimicking phantom for thermal therapy. Phys Med Biol 2004;49:2767–78
  • Bu-Lin Z, Bing H, Sheng-Li K, Huang Y, Rong W, Jia L. A polyacrylamide gel phantom for radiofrequency ablation. Int J Hyperthermia 2008;24:568–76
  • Choi MJ, Guntur SR, Lee KI, Paeng DG, Coleman A. A tissue mimicking polyacrylamide hydrogel phantom for visualizing thermal lesions generated by high intensity focused ultrasound. Ultrasound Med Biol 2013;39:439–48
  • Takegami K, Kaneko Y, Watanabe T, Maruyama T, Matsumoto Y, Nagawa H. Polyacrylamide gel containing egg white as new model for irradiation experiments using focused ultrasound. Ultrasound Med Biol 2004;30:1419–22
  • Divkovic GW, Liebler M, Braun K, Dreyer T, Huber PE, Jenne JW. Thermal properties and changes of acoustic parameters in an egg white phantom during heating and coagulation by high intensity focused ultrasound. Ultrasound Med Biol 2007;33:981–6
  • Labuda CP, Church CC. Augmentation of HIFU-induced heating with fibers embedded in a phantom. Ultrasound Med Biol 2011;37:442–9
  • Miyakawa M, Hoshina S. A self-supporting gel phantom used for visualization and/or measurement of the three-dimensional distribution of SAR. In: Proceedings of the IEEE EMC Symposium, 2002, Minneapolis, MN, August 19–23. New York: IEEE, 2002, pp. 671–6
  • Park SK, Anjaneya Reddy Guntur SR, Lee KI, Paeng D-G, Choi MJ. Reusable ultrasonic tissue mimicking hydrogels containing nonionic surface-active agents for visualizing thermal lesions. IEEE Trans Biomed Eng 2010;57:194–202
  • Kulčar R, Friškovec M, Hauptman N, Vesel A, Gunde MK. Colorimetric properties of reversible thermochromic printing inks. Dyes Pigments 2010;86:271–7
  • Partanen A, Yarmolenko PS, Viitala A, Appanaboyina S, Haemmerich D, Ranjan A, et al. Mild hyperthermia with magnetic resonance-guided high-intensity focused ultrasound for applications in drug delivery. Int J Hyperthermia 2012;28:320–36
  • Siddiqi AK. Development of tissue-equivalent heat-sensitive gel for the experimental verification of near infrared (NIR) laser-mediated cancer detection and therapy [MA Dissertation]. Atlanta, GA: Georgia Institute of Technology; 2009
  • Kanda MY, Ballen M, Salins S, Chung-Kwang C, Balzano Q. Formulation and characterization of tissue equivalent liquids used for RF densitometry and dosimetry measurements. IEEE Trans Microw Theory Tech 2004;52:2046–56
  • Paulides MM, Stauffer PR, Neufeld E, Maccarini PF, Kyriakou A, Canters RA, et al. Simulation techniques in hyperthermia treatment planning. Int J Hyperthermia 2013;29:346–57
  • Arora D, Skliar M, Cooley D, Blankespoor A, Moellmer J, Roemer R. Nonlinear model predictive thermal dose control of thermal therapies: Experimental validation with phantoms. In: Proceedings of the American Control Conference, 2004, Boston, MA, June 30–July 2. New York: IEEE, 2004, pp. 1627–32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.