109
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Effects of cyclosporin A administration on gene expression in rat brain

, PhD, , , &
Pages 614-623 | Received 24 Jun 2010, Accepted 08 Mar 2011, Published online: 04 May 2011

References

  • Shiga Y, Onodera H, Matsuo Y, Kogure K. Cyclosporin A protects against ischemia-reperfusion injury in the brain. Brain Research 1992; 595: 145–148
  • Uchino H, Elmer E, Uchino K, Lindvall O, Siesjo BK. Cyclosporin A dramatically ameliorates CA1 hippocampal damage following transient forebrain ischaemia in the rat. Acta Physiologic Scandinavica 1995; 155: 469–471
  • Kuroda S, Nakagawa N, Tokunaga C, Tatematsu K, Tanizawa K. Mammalian homologue of the Caenorhabditis elegans UNC-76 protein involved in axonal outgrowth is a protein kinase C zeta-interacting protein. Journal of Cell Biology 1999; 144: 403–411
  • Kirino T, Tamura A, Sano K. Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathologica 1984; 64: 139–147
  • Yamashima T, Tonchev AB, Borlongan CV. Differential response to ischemia in adjacent hippocampalsectors: Neuronal death in CA1 versus neurogenesis in dentate gyrus. Journal of Biotechnology 2007; 2: 596–607
  • Uchino H, Elmer E, Uchino K, Li PA, He QP, Smith ML, Siesjo BK. Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat. Brain Research 1998; 812: 216–226
  • Wu HY, Tomizawa K, Oda Y, Wei FY, Lu YF, Matsushita M, Li ST, Moriwaki A, Matsui H. Critical role of calpain-mediated cleavage of calcineurin in excitotoxic neurodegeneration. Journal of Biological Chemistry 2004; 279: 4929–4940
  • Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 1999; 284: 339–343
  • MacKintosh C, MacKintosh RW. Inhibitors of protein kinases and phosphatases. Trends in Biochemical Sciences 1994; 19: 444–448
  • Sharkey J, Butcher SP. Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischaemia. Nature 1994; 371: 336–339
  • Butcher SP, Henshall DC, Teramura Y, Iwasaki K, Sharkey J. Neuroprotective actions of FK506 in experimental stroke: in vivo evidence against an antiexcitotoxic mechanism. Journal of Neuroscience 1997; 17: 6939–6946
  • Yoshimoto T, Siesjo BK. Posttreatment with the immunosuppressant cyclosporin A in transient focal ischemia. Brain Research 1999; 839: 283–291
  • Friberg H, Ferrand-Drake M, Bengtsson F, Halestrap AP, Wieloch T. Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. Journal of Neuroscience 1998; 18: 5151–5159
  • Tocci MJ, Matkovich DA, Collier KA, Kwok P, Dumont F, Lin S, Degudicibus S, Siekierka JJ, Chin J, Hutchinson NI. The immunosuppressant FK506 selectively inhibits expression of early T cell activation genes. Journal of Immunology 1989; 143: 718–726
  • Nicholls DG, Chalmers S. The integration of mitochondrial calcium transport and storage. J Bioenergetics & Biomembranes 2004; 36: 277–281
  • Jonas EA. Molecular participants in mitochondrial cell death channel formation during neuronal ischemia. Experimental Neurology 2009; 218: 203–212
  • Woodfield KY, Price NT, Halestrap AP. cDNA cloning of rat mitochondrial cyclophilin. Biochimica et Biophysica Acta 1997; 1351: 27–30
  • Gunter TE, Gunter KK, Sheu SS, Gavin CE. Mitochondrial calcium transport: Physiological and pathological relevance. American Journal of Physiology 1994; 267: 313–339
  • Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. American Journal of Physiology 1990; 258: 755–786
  • Zoratti M, Szabo I. The mitochondrial permeability transition. Biochimica et Biophysica Acta 1995; 1241: 139–176
  • Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC, et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 1998; 281: 2027–2031
  • Schweizer M, Schlegel J, Baumgartner D, Richter C. Sensitivity of mitochondrial peptidyl-prolyl cis-trans isomerase, pyridine nucleotide hydrolysis and Ca2+ release to cyclosporine A and related compounds. Biochemical Pharmacology 1993; 45: 641–646
  • Chopp M, Li Y, Jiang N. Increase in apoptosis and concomitant reduction of ischemic lesion volume and evidence for synaptogenesis after transient focal cerebral ischemia in rat treated with staurosporine. Brain Research 1999; 828: 197–201
  • MacManus JP, Linnik MD. Gene expression induced by cerebral ischemia: An apoptotic perspective. Journal of Cerebral Blood Flow & Metabolism 1997; 17: 815–832
  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, et al. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences (USA) 1996; 93: 6025–6030
  • Yoshimoto T, Uchino H, He QP, Li PA, Siesjo BK. Cyclosporin A, but not FK506, prevents the downregulation of phosphorylated Akt after transient focal ischemia in the rat. Brain Research 2001; 899: 148–158
  • Mathur S, Cleary KR, Inamdar N, Kim YH, Steck P, Frazier ML. Overexpression of elongation factor-1gamma protein in colorectal carcinoma. Cancer 1998; 82: 816–821
  • Cavallius J, Rattan SI, Clark BF. Changes in activity and amount of active elongation factor 1 alpha in aging and immortal human fibroblast cultures. Experimental Gerontology 1986; 21: 149–157
  • Shepherd JC, Walldorf U, Hug P, Gehring WJ. Fruit flies with additional expression of the elongation factor EF-1 alpha live longer. Proceedings of the National Academy of Sciences (USA) 1989; 86: 7520–7521
  • Wang JF, Engelsberg BN, Johnson SW, Witmer C, Merrick WC, Rozmiarek H, Billings PC. DNA binding activity of the mammalian translation elongation complex: Recognition of chromium- and transplatin-damaged DNA. Archives of Toxicology 1997; 71: 450–454
  • Jung M, Kondratyev AD, Dritschilo A. Elongation factor 1 delta is enhanced following exposure to ionizing radiation. Cancer Research 1994; 54: 2541–2543
  • DeWille JW, Farmer SJ. Quaking phenotype influences brain lipid-related mRNA levels. Neuroscience Letters 1992; 141: 195–198
  • DeWille JW, Farmer SJ. Postnatal dietary fat influences mRNAS involved in myelination. Developmental Neuroscience 1992; 14: 61–68
  • Zumkeller W. The effect of insulin-like growth factors on brain myelination and their potential therapeutic application in myelination disorders. European Journal of Paediatric Neurology 1997; 1: 91–101
  • Kubota H, Yokota S, Yanagi H, Yura T. Structures and co-regulated expression of the genes encoding mouse cytosolic chaperonin CCT subunits. European Journal of Biochemistry 1999; 262: 492–500
  • Stoldt V, Rademacher F, Kehren V, Ernst JF, Pearce DA, Sherman F. Review: The Cct eukaryotic chaperonin subunits of Saccharomyces cerevisiae and other yeasts. Yeast 1996; 12: 523–529
  • Creutz CE, Liou A, Snyder SL, Brownawell A, Willison K. Identification of the major chromaffin granule-binding protein, chromobindin A, as the cytosolic chaperonin CCT (chaperonin containing TCP-1). Journal of Biological Chemistry 1994; 269: 32035–32038
  • Roobol A, Holmes FE, Hayes NV, Baines AJ, Carden MJ. Cytoplasmic chaperonin complexes enter neurites developing in vitro and differ in subunit composition within single cells. Journal of Cell Science 1995; 108: 1477–1488
  • Bloom L, Horvitz HR. The Caenorhabditis elegans gene unc-76 and its human homologs define a new gene family involved in axonal outgrowth and fasciculation. Proceedings of the National Academy of Sciences (USA) 1997; 94: 3414–3419
  • Aitken A. 14-3-3 proteins on the MAP. Trends in Biochemical Sciences 1995; 20: 95–97
  • Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996; 87: 619–628
  • Zhang L, Chen J, Fu H. Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proceedings of the National Academy of Sciences (USA) 1999; 96: 8511–8515
  • Hara H, Friedlander RM, Gagliardini V, Ayata C, Fink K, Huang Z, Shimizu-Sasamata M, Yuan J, Moskowitz MA. Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proceedings of the National Academy of Sciences (USA) 1997; 94: 2007–2012
  • Yaoita H, Ogawa K, Maehara K, Maruyama Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 1998; 97: 276–281
  • Cheng Y, Deshmukh M, D'Costa A, Demaro JA, Gidday JM, Shah A, Sun Y, Jacquin MF, Johnson EM, Holtzman DM. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. Journal of Clinical Investigation 1998; 101: 1992–1999
  • Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH, Simon RP. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. Journal of Neuroscience 1998; 18: 4914–4928
  • Rabuffetti M, Sciorati C, Tarozzo G, Clementi E, Manfredi AA, Beltramo M. Inhibition of caspase-1-like activity by Ac-Tyr-Val-Ala-Asp-chloromethyl ketone induces long-lasting neuroprotection in cerebral ischemia through apoptosis reduction and decrease of proinflammatory cytokines. Journal of Neuroscience 2000; 20: 4398–4404
  • Martinou JC, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M, Albertini P, Talabot D, Catsicas S, Pietra C, et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 1994; 13: 1017–1030
  • Wiessner C, Allegrini PR, Rupalla K, Sauer D, Oltersdorf T, McGregor AL, Bischoff S, Bottiger BW, van der Putten H. Neuron-specific transgene expression of Bcl-XL but not Bcl-2 genes reduced lesion size after permanent middle cerebral artery occlusion in mice. Neuroscience Letters 1999; 268: 119–122
  • Xing H, Zhang S, Weinheimer C, Kovacs A, Muslin AJ. 14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. The EMBO Journal 2000; 19: 349–358
  • Landgraf P, Wahle P, Pape HC, Gundelfinger ED, Kreutz MR. The survival-promoting peptide Y-P30 enhances binding of pleiotrophin to syndecan-2 and -3 and supports its neuritogenic activity. Journal of Biological Chemistry 2008; 283: 25036–25045
  • Landgraf P, Sieg F, Wahle P, Meyer G, Kreutz MR, Pape HC. A maternal blood-borne factor promotes survival of the developing thalamus. The FASEB Journal 2005; 19: 225–227
  • Zhao Y, Lang G, Ito S, Bonnet J, Metzger E, Sawatsubashi S, Suzuki E, Le Guezennec X, Stunnenberg HG, Krasnov A, et al. A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Molecular Cell 2008; 29: 92–101
  • Nagy Z, Tora L. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 2007; 26: 5341–5357
  • Leng N, Gu G, Simerly RB, Spindel ER. Molecular cloning and characterization of two putative G protein-coupled receptors which are highly expressed in the central nervous system. Brain Research Molecular Brain Research 1999; 69: 73–83
  • Marazziti D, Gallo A, Golini E, Matteoni R, Tocchini-Valentini GP. Molecular cloning and chromosomal localization of the mouse Gpr37 gene encoding an orphan G-protein-coupled peptide receptor expressed in brain and testis. Genomics 1998; 53: 315–324
  • Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 2001; 105: 891–902
  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392: 605–608
  • Murakami T, Shoji M, Imai Y, Inoue H, Kawarabayashi T, Matsubara E, Harigaya Y, Sasaki A, Takahashi R, Abe K. Pael-R is accumulated in Lewy bodies of Parkinson's disease. Annals of Neurology 2004; 55: 439–442
  • Yang Y, Nishimura I, Imai Y, Takahashi R, Lu B. Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron 2003; 37: 911–924
  • Rezgaoui M, Susens U, Ignatov A, Gelderblom M, Glassmeier G, Franke I, Urny J, Imai Y, Takahashi R, Schaller HC. The neuropeptide head activator is a high-affinity ligand for the orphan G-protein-coupled receptor GPR37. Journal of Cell Science 2006; 119: 542–549
  • Bodenmuller H, Schaller HC. Conserved amino acid sequence of a neuropeptide, the head activator, from coelenterates to humans. Nature 1981; 293: 579–580
  • Berman SB, Hastings TG. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: Implications for Parkinson's disease. Journal of Neurochemistry 1999; 73: 1127–1137
  • Famulski JK, Vos L, Sun X, Chan G. Stable hZW10 kinetochore residency, mediated by hZwint-1 interaction, is essential for the mitotic checkpoint. Journal of Cell Biology 2008; 180: 507–520
  • van Vlijmen T, Vleugel M, Evers M, Mohammed S, Wulf PS, Heck AJ, Hoogenraad CC, van der Sluijs P. A unique residue in rab3c determines the interaction with novel binding protein Zwint-1. FEBS Letters 2008; 582: 2838–2842
  • Rogers J, Cooper NR, Webster S, Schultz J, McGeer PL, Styren SD, Civin WH, Brachova L, Bradt B, Ward P, et al. Complement activation by beta-amyloid in Alzheimer disease. Proceedings of the National Academy of Sciences (USA) 1992; 89: 10016–10020
  • Jiang H, Burdick D, Glabe CG, Cotman CW, Tenner AJ. beta-Amyloid activates complement by binding to a specific region of the collagen-like domain of the C1q A chain. Journal of Immunology 1994; 152: 5050–5059
  • Afagh A, Cummings BJ, Cribbs DH, Cotman CW, Tenner AJ. Localization and cell association of C1q in Alzheimer's disease brain. Experimental Neurology 1996; 138: 22–32
  • Yao J, Harvath L, Gilbert DL, Colton CA. Chemotaxis by a CNS macrophage, the microglia. Journal of Neuroscience Research 1990; 27: 36–42
  • O’Barr S, Cooper NR. The C5a complement activation peptide increases IL-1beta and IL-6 release from amyloid-beta primed human monocytes: Implications for Alzheimer's disease. Journal of Neuroimmunology 2000; 109: 87–94
  • Benveniste EN, Nguyen VT, O’Keefe GM. Immunological aspects of microglia: Relevance to Alzheimer's disease. Neurochemistry International 2001; 39: 381–391
  • Tenner AJ. Complement in Alzheimer's disease: Opportunities for modulating protective and pathogenic events. Neurobiology of Aging 2001; 22: 849–861
  • Fonseca MI, Zhou J, Botto M, Tenner AJ. Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer's disease. Journal of Neuroscience 2004; 24: 6457–6465
  • Pedersen ED, Waje-Andreassen U, Vedeler CA, Aamodt G, Mollnes TE. Systemic complement activation following human acute ischaemic stroke. Clinical and Experimental Immunology 2004; 137: 117–122
  • Arumugam TV, Magnus T, Woodruff TM, Proctor LM, Shiels IA, Taylor SM. Complement mediators in ischemia-reperfusion injury. Clinica Chimica Acta 2006; 374: 33–45
  • Ten VS, Sosunov SA, Mazer SP, Stark RI, Caspersen C, Sughrue ME, Botto M, Connolly ES, Jr., Pinsky DJ. C1q-deficiency is neuroprotective against hypoxic-ischemic brain injury in neonatal mice. Stroke 2005; 36: 2244–2250
  • Ten VS, Yao J, Ratner V, Sosunov S, Fraser DA, Botto M, Sivasankar B, Morgan BP, Silverstein S, Stark R, et al. Complement component c1q mediates mitochondria-driven oxidative stress in neonatal hypoxic-ischemic brain injury. Journal of Neuroscience 2010; 30: 2077–2087
  • Girod A, Storrie B, Simpson JC, Johannes L, Goud B, Roberts LM, Lord JM, Nilsson T, Pepperkok R. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nature Cell Biology 1999; 1: 423–430
  • White J, Johannes L, Mallard F, Girod A, Grill S, Reinsch S, Keller P, Tzschaschel B, Echard A, Goud B, et al. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. Journal of Cell Biology 1999; 147: 743–760
  • McConlogue L, Castellano F, deWit C, Schenk D, Maltese WA. Differential effects of a Rab6 mutant on secretory versus amyloidogenic processing of Alzheimer's beta-amyloid precursor protein. Journal of Biological Chemistry 1996; 271: 1343–1348
  • Scheper W, Hoozemans JJ, Hoogenraad CC, Rozemuller AJ, Eikelenboom P, Baas F. Rab6 is increased in Alzheimer's disease brain and correlates with endoplasmic reticulum stress. Neuropathology and Applied Neurobiology 2007; 33: 523–532
  • Mali Y, Zisapels N. Gain of interaction of ALS-linked G93A superoxide dismutase with cytosolic malate dehydrogenase. Neurobiology of Disease 2008; 32: 133–141
  • Volkert MR, Elliott NA, Housman DE. Functional genomics reveals a family of eukaryotic oxidation protection genes. Proceedings of the National Academy of Science (USA) 2000; 97: 14530–14535
  • Natoli R, Provis J, Valter K, Stone J. Expression and role of the early-response gene Oxr1 in the hyperoxia-challenged mouse retina. Investigative Ophthalmology and Visual Science 2008; 49: 4561–4567
  • Inouye S, Seo M, Yamada Y, Nakazawa A. Increase of adenylate kinase isozyme 1 protein during neuronal differentiation in mouse embryonal carcinoma P19 cells and in rat brain primary cultured cells. Journal of Neurochemistry 1998; 71: 125–133
  • O'Rourke JF, Pugh CW, Bartlett SM, Ratcliffe PJ. Identification of hypoxically inducible mRNAs in HeLa cells using differential-display PCR. Role of hypoxia-inducible factor-1. Euopean Journal of Biochemistry 1996; 241: 403–410
  • Shahjahan M, Yamada M, Tanaka H, Nakazawa A. Cloning and characterization of the gene encoding bovine mitochondrial adenylate kinase isozyme 3. Gene 1991; 107: 313–317
  • Popanda O, Fox G, Thielmann HW. Modulation of DNA polymerases alpha, delta and epsilon by lactate dehydrogenase and 3-phosphoglycerate kinase. Biochimica Biophysica Acta 1998; 1397: 102–117
  • Ogino T, Iwama M, Kinouchi J, Shibagaki Y, Tsukamoto T, Mizumoto K. Involvement of a cellular glycolytic enzyme, phosphoglycerate kinase, in Sendai virus transcription. Journal of Biological Chemistry 1999; 274: 35999–36008
  • Shetty S, Muniyappa H, Halady PK, Idell S. Regulation of urokinase receptor expression by phosphoglycerate kinase. American Journal of Respiratory Cell and Molecular Biology 2004; 31: 100–106
  • Lay AJ, Jiang XM, Kisker O, Flynn E, Underwood A, Condron R, Hogg PJ. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase. Nature 2000; 408: 869–873
  • Lin L, Jeanclos EM, Treuil M, Braunewell KH, Gundelfinger ED, Anand R. The calcium sensor protein visinin-like protein-1 modulates the surface expression and agonist sensitivity of the alpha 4beta 2 nicotinic acetylcholine receptor. Journal of Biological Chemistry 2002; 277: 41872–41878
  • Schnurra I, Bernstein HG, Riederer P, Braunewell KH. The neuronal calcium sensor protein VILIP-1 is associated with amyloid plaques and extracellular tangles in Alzheimer's disease and promotes cell death and tau phosphorylation in vitro: A link between calcium sensors and Alzheimer's disease?. Neurobiology of Disease 2001; 8: 900–909
  • Steiner JP, Connolly MA, Valentine HL, Hamilton GS, Dawson TM, Hester L, Snyder SH. Neurotrophic actions of nonimmunosuppressive analogues of immunosuppressive drugs FK506, rapamycin and cyclosporin A. Nature Medicine 1997; 3: 421–428
  • Gold BG, Gordon HS, Wang MS. Efficacy of delayed or discontinuous FK506 administrations on nerve regeneration in the rat sciatic nerve crush model: Lack of evidence for a conditioning lesion-like effect. Neuroscience Letters 1999; 267: 33–36
  • Seaton TA, Cooper JM, Schapira AH. Cyclosporin inhibition of apoptosis induced by mitochondrial complex I toxins. Brain Research 1998; 809: 12–17
  • Tatton WG, Chalmers-Redman RM. Mitochondria in neurodegenerative apoptosis: An opportunity for therapy?. Annals of Neurology 1998; 44(3 Suppl 1)134–141
  • Cassarino DS, Swerdlow RH, Parks JK, Parker WD, Jr, Bennett JP, Jr. Cyclosporin A increases resting mitochondrial membrane potential in SY5Y cells and reverses the depressed mitochondrial membrane potential of Alzheimer's disease cybrids. Biochemical and Biophysical Research Communications 1998; 248: 168–173
  • Wong A, Cortopassi G. mtDNA mutations confer cellular sensitivity to oxidant stress that is partially rescued by calcium depletion and cyclosporin A. Biochemical and Biophysical Research Communications 1997; 239: 139–145
  • Sabatini DM, Lai MM, Snyder SH. Neural roles of immunophilins and their ligands. Molecular Neurobiology 1997; 15: 223–239
  • Miller RG, Sharma KR, Pavlath GK, Gussoni E, Mynhier M, Lanctot AM, Greco CM, Steinman L, Blau HM. Myoblast implantation in Duchenne muscular dystrophy: The San Francisco study. Muscle Nerve 1997; 20: 469–478
  • Sharma KR, Mynhier MA, Miller RG. Cyclosporine increases muscular force generation in Duchenne muscular dystrophy. Neurology 1993; 43: 527–532

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.