220
Views
15
CrossRef citations to date
0
Altmetric
Original Article

Slit-Lamp-Adapted Fourier-Domain OCT for Anterior and Posterior Segments: Preliminary Results and Comparison to Time-Domain OCT

, , , , , , , , & show all
Pages 722-732 | Received 21 Dec 2009, Accepted 22 Mar 2010, Published online: 30 Jul 2010

REFERENCES

  • Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254:1178–1181.
  • Hee MR, Izatt JA, Swanson EA, et al. Optical coherence tomography of the human retina. Arch Ophthalmol. 1995;113:325–332.
  • Hoerauf H, Wirbelauer C, Scholz C, et al. Slit-lamp-adapted optical coherence tomography of the anterior segment. Graefes Arch Clin Exp Ophthalmol. 2000;238:8–18.
  • Radhakrishnan S, Rollins AM, Roth JE, et al. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol. 2001;119:1179–1185.
  • Wirbelauer C, Scholz C, Hoerauf H, et al. [Examination of the cornea using optical coherence tomography]. Ophthalmologe. 2001;98:151–156.
  • Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology. 1995;102:217–229.
  • Hassenstein A, Scholz F, Richard G. [OCT in macular holes]. Ophthalmologe. 2004;101:777–784.
  • Leung CK, Cheung CY, Weinreb RN, et al. Comparison of macular thickness measurements between time domain and spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2008;49:4893–4897.
  • Hoerauf H, Winkler J, Scholz C, et al. Transscleral optical coherence tomography—An experimental study in ex-vivo human eyes. Lasers Surg Med. 2002;30:209–215.
  • Wojtkowski M, Leitgeb R, Kowalczyk A, et al. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt. 2002;7:457–463.
  • Drexler W, Sattmann H, Hermann B, et al. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol. 2003;121:695–706.
  • Hitzenberger CK, Baumgartner A, Drexler W, et al. Interferometric measurement of corneal thickness with micrometer precision. Am J Ophthalmol. 1994;118:468–476.
  • Nassif N, Cense B, Park BH, et al. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett. 2004;29:480–482.
  • Li H, Leung CK, Wong L, et al. Comparative study of central corneal thickness measurement with slit-lamp optical coherence tomography and visante optical coherence tomography. Ophthalmology. 2008;115:796–801 e2.
  • Viestenz A, Vogt S, Langenbucher A, et al. [Biometry of the anterior segment using optical coherence tomography: Evaluation of different devices and analysis programs]. Ophthalmologe. 2009;106:723–728.
  • Wirbelauer C, Thannhauser CL, Pham DT. Influence of corneal curvature on central and paracentral pachymetry with optical coherence tomography. Cornea. 2009;28:254–260.
  • Wirbelauer C, Winkler J, Bastian GO, et al. Histopathological correlation of corneal diseases with optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2002;240:727–734.
  • Feng Y, Simpson TL. Corneal, limbal, and conjunctival epithelial thickness from optical coherence tomography. Optom Vis Sci. 2008;85:E880–E883.
  • Collins J ed., Ophthalmic Desk Reference. New York: Raven Press Ltd; 1991.
  • Christopoulos V, Kagemann L, Wollstein G, et al. In vivo corneal high-speed, ultra high-resolution optical coherence tomography. Arch Ophthalmol. 2007;125:1027–1035.
  • Theelen T, Wesseling P, Keunen JE, et al. A pilot study on slit lamp-adapted optical coherence tomography imaging of trabeculectomy filtering blebs. Graefes Arch Clin Exp Ophthalmol. 2007;245:877–882.
  • Hoerauf H, Scholz C, Koch P, et al. Transscleral optical coherence tomography: A new imaging method for the anterior segment of the eye. Arch Ophthalmol. 2002;120:816–819.
  • Wong HT, Lim MC, Sakata LM, et al. High-definition optical coherence tomography imaging of the iridocorneal angle of the eye. Arch Ophthalmol. 2009;127:256–260.
  • Sakata LM, Lavanya R, Friedman DS, et al. Assessment of the scleral spur in anterior segment optical coherence tomography images. Arch Ophthalmol. 2008;126:181–185.
  • Muller M, Hoerauf H, Geerling G, et al. Filtering bleb evaluation with slit-lamp-adapted 1310-nm optical coherence tomography. Curr Eye Res. 2006;31:909–915.
  • Kawana K, Kiuchi T, Yasuno Y, et al. Evaluation of trabeculectomy blebs using 3-dimensional cornea and anterior segment optical coherence tomography. Ophthalmology. 2009;116:848–855.
  • Savini G, Zanini M, Barboni P. Filtering blebs imaging by optical coherence tomography. Clin Experiment Ophthalmol. 2005;33:483–489.
  • Wylegala E, Teper S, Nowinska AK, et al. Anterior segment imaging: Fourier-domain optical coherence tomography versus time-domain optical coherence tomography. J Cataract Refract Surg. 2009;35:1410–1414.
  • Hangai M, Yamamoto M, Sakamoto A, et al. Ultrahigh-resolution versus speckle noise-reduction in spectral-domain optical coherence tomography. Opt Express. 2009;17:4221–4235.
  • Ko TH, Fujimoto JG, Duker JS, et al. Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology. 2004;111:2033–2043.
  • Ko TH, Fujimoto JG, Schuman JS, et al. Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular pathology. Ophthalmology. 2005;112:1922 e1–15.
  • Schaudig U, Scholz F, Lerche RC, et al. [Optical coherence tomography for macular edema. Classification, quantitative assessment, and rational usage in the clinical practice.] Ophthalmologe. 2004;101:785–793.
  • Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci. 2009;50:3432–3437.
  • Chaber S, Helbig H, Gamulescu M. [Time domain OCT versus frequency domain OCT: Measuring differences of macular thickness in healthy subjects.] Ophthalmologe. 2010;107:36–40.
  • Han IC, Jaffe GJ. Comparison of spectral- and time-domain optical coherence tomography for retinal thickness measurements in healthy and diseased eyes. Am J Ophthalmol. 2009;147:847–858, 58 e1.
  • Bohm AG, Schmidt E, Muller-Holz M, et al. [Measurement of peripapillary nerve fiber layer thickness at different distances from the optic nerve head with OCT.] Ophthalmologe. 2006;103:387–392.
  • Wollstein G, Paunescu LA, Ko TH, et al. Ultrahigh-resolution optical coherence tomography in glaucoma. Ophthalmology. 2005;112:229–237.
  • Inoue R, Hangai M, Kotera Y, et al. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma. Ophthalmology. 2009;116:214–222.
  • Muller M, Schulz-Wackerbarth C, Steven P, et al. 830 nm Slit-lamp adapted Fourier domain OCT for anterior and posterior segment—First results and comparison to time domain OCT. Invest Ophthalmol Vis Sci. 2009;50: E-Abstract 5801.
  • Potsaid B, Gorczynska I, Srinivasan VJ, et al. Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Opt Express. 2008;16:15149–15169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.