139
Views
8
CrossRef citations to date
0
Altmetric
Short Communication

Systematic Variations in Immune Response-Related Gene Transcript Abundance Suggest New Questions about Environmental Influences on Lacrimal Gland Immunoregulation

, , , , , , , & show all
Pages 285-294 | Received 16 Jun 2010, Accepted 18 Dec 2010, Published online: 15 Mar 2011

REFERENCES

  • Waterhouse JP. Focal adenitis in salivary and lacrimal glands. Proc Roy Soc Med. 1963;56:911–917.
  • Whaley K, Williamson J, Wilson T, et al. Sjögren’s syndrome and autoimmunity in a geriatric population. Age Aging. 1972;1:197–206.
  • Williamson J, Gibson AA, Wilson T, et al. Histology of the lacrimal gland in keratoconjunctivitis sicca. Br J Ophthalmol. 1973;57:852–858.
  • Damato BE, Allan D, Murray SB, et al. Senile atrophy of the human lacrimal gland: The contribution of chronic inflammatory disease. Br J Ophthalmol. 1984;68:674–680.
  • Roen JL, Stasior OG, Jakobiec FA. Aging change in the human lacrimal gland: Role of the ducts. CLAO J. 1985;2:237–242.
  • Obata H, Yamamoto S, Horiuchi H, et al. Histopathologic study of human lacrimal gland. Ophthalmol. 1995;102:678–686.
  • Obata H. Anatomy and histopathology of the human lacrimal gland. Cornea. 2006;25:S82–S89.
  • Rose, CM, Qian L, Hakim L, et al. Accumulation of catalytically active proteases in lacrimal gland acinar cell endosomes during chronic ex vivo muscarinic receptor stimulation. Scand J Immunol. 2005;61:36–50.
  • Liu SH, Prendergast RA, Silverstein AM. Experimental autoimmune dacryoadenitis. 1. Lacrimal gland disease in the rat. Invest Ophthalmol Vis Sci. 1987;28:270–275.
  • Jiang G, Ke Y, Sun D, et al. A new model of experimental autoimmune keratoconjunctivitis sicca (KCS) induced in Lewis rat by the autoantigen Klk1b22. Invest Ophthalmol Vis Sci. 2008;50:2245–2254.
  • Liu SH, Zhou DH, Hess AD. Adoptive transfer of experimental autoimmune dacryoadenitis in susceptible and resistant mice. Cell Immunol. 1993;150:311–320.
  • Niederkorn JY, Stern ME, Pflugfelder SC, et al. Desiccating stress induces T cell-mediated Sjögren’s syndrome-like lacrimal keratoconjunctivitis. J Immunol. 2006;176:3950–3957.
  • Guo Z, Song D, Azzarolo AM, et al. Autologous lacrimal-lymphoid mixed cell reactions induce dacryoadenitis in rabbits. Exp Eye Res. 2000;71:23–31.
  • Zhu Z, Stevenson D, Schechter JE, et al. Lacrimal histopathology and ocular surface disease in a rabbit model of autoimmune dacryoadenitis. Cornea. 2003;22:25–32.
  • Zhu Z, Stevenson D, Schechter JE, et al. Tumor necrosis factor inhibitor gene expression suppresses lacrimal gland immunopathology in a rabbit model of autoimmune dacryoadenitis. Cornea. 2003;22:343–351.
  • Zhu Z, Stevenson D, Schechter JE, et al. Prophylactic effect of IL-10 gene transfer on induced autoimmune dacryoadenitis. Invest Ophthalmol Vis Sci. 2004;45:1375–1381.
  • Thomas PB, Samant DM, Zhu Z, et al. Long-term topical cyclosporine treatment improves tear production and reduces keratoconjunctivitis in rabbits with induced autoimmune dacryoadenitis. J Ocular Pharmacol Therap. 2009;25:285–291.
  • Thomas PB, Zhu Z, Selvam S, et al. Autoimmune dacryoadenitis and keratoconjunctivitis induced in rabbits by subcutaneous injection of autologous lymphocytes activated ex vivo against lacrimal antigens. J Autoimmun. 2008;31:116–122
  • Thomas PB, Samant DM, Wang Y, et al. Distinct dacryoadenitides autoadoptively transferred to rabbits by different subpopulations of lymphocytes activated ex vivo. Cornea. 2010;29:1153–1162.
  • Thomas PB, Samant DM, Selvam S, et al. Adeno-associated virus-mediated IL-10 gene transfer suppresses lacrimal gland immunopathology in a rabbit model of autoimmune dacryoadenitis. Invest Ophthalmol Vis Sci. 2010;51:5137–5144.
  • Wood RL, Trousdale MD, Stevenson D, et al. Adenovirus infection of cornea causes histopathologic changes in the lacrimal gland. Curr Eye Res. 1997;16:459–466.
  • Sakaguchi S, Fukuma K, Kuribayashi K, et al. Organ-specific autoimmune disease induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med. 1985;161:72–87.
  • Pockley AG, Montgomery PC. Identification of lacrimal gland associated immunomodulatory activities having different effects on T and B cell proliferative responses. Regional Immunol. 1990–1991;3:198–203.
  • de Saint Jean M, Nakamura T, Wang Y, et al. Suppression of lymphocyte proliferation and regulation of dendritic cell phenotype by soluble mediators from rat lacrimal epithelial cells. Scand J Immunol. 2009;70:53–62.
  • Mircheff AK, Wang Y, de Saint Jean M, et al. Lacrimal epithelium mediates hormonal influences on APC and lymphocyte cycles in the ocular surface system. In: Zierhut M, Rammensee HG, Streilein JW (Eds.). Antigen Presenting Cells and the Eye. New York: Informa, 2007; pp. 93–119.
  • Dursun D, Wang M, Monroy D, et al. A mouse model of keratoconjunctivitis sicca. Invest Ophthalmol Vis Sci. 2002;43:632–638.
  • Barabino S, Shen L, Chen L, et al. The controlled environment chamber: A new mouse model of dry eye. Invest Ophthalmol Vis Sci. 2005;46:2766–2771.
  • Barabino S, Rolando M, Chen L, et al. Exposure to a dry environment induces strain-specific responses in mice. Exp Eye Res. 2007;84:973–977.
  • Borchman D, Foulks GN, Yappert MC, et al. Factors affecting evaporation rates of tear film components measured in vitro. Eye Cont Lens. 2009;35:32–37.
  • McCulley JP, Uchiyama E, Aronowicz JD, et al. Impact of evaporation on aqueous tear loss. Trans Am Ophthalmol Soc. 2006;104:121–128.
  • Ji Q, Chang L, VanDenBerg D, et al. Selective reduction of AKR1C2 in prostate cancer and its role in DHT metabolism. Prostate. 2003;54:275–289.
  • Poole JA, Wyatt TA, Oldenburg PJ, et al. Intranasal organic dust exposure-induced airway adaptation response marked by persistent lung inflammation and pathology in mice. Am J Physiol Lung Cell Mol Physiol. 2009;296:1085–1095.
  • Stern ME, Beuerman RW, Fox RI, et al. The pathology of dry eye: The interaction between the ocular surface and lacrimal glands. Cornea. 1998;17:584–589.
  • Mircheff AK, Schechter JE. Immune mechanisms of dry eye disease. In: Levin LA, Albert DM (Eds.). Ocular Disease: Mechanisms and Management. London, UK. Elsevier Science, 2010; pp. 129–139.
  • Acosta MC, Peral A, Luna C, et al. Tear secretion induced by selective stimulation of corneal and conjunctival sensory nerve fibers. Invest Ophthalmol Vis Sci. 2004;45:2333–2336.
  • Luo L, Li D-Q, Doshi A, et al. Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface. Invest Ophthalmol Vis Sci. 2004;45:4293–4301.
  • Li DQ, Luo L, Chen Z, et al. JNK and ERK MAP kinases mediate induction of IL-1β, TNF-α and IL-8 following hyperosmolar stress in human limbal epithelial cells. Exp Eye Res. 2006;82:588–596.
  • Gao J, Siemasko KF, Niederkorn JY, et al. Corneas exposed to desiccating stress are immunogenic and induce T cell proliferation in mice with experimental lacrimal keratoconjunctivitis (LKC). Invest Ophthalmol Vis Sci. 2008;49: E-Abstract 1928.
  • Dartt DA, Baker AK, Vaillant C, et al. Vasoactive intestinal polypeptide stimulation of protein secretion from rat lacrimal gland acini. Am J Physiol. 1984;247:G502–G509.
  • Williams RM, Singh J, Sharkey K. Innervation and mast cells of the rat exorbital lacrimal gland: Effect of age. J Auton Nerv Sys. 1994;47:87–97.
  • Draper CE, Singh J, Adeghate E. Effects of age on morphology, protein synthesis and secretagogue-evoked secretory responses in the rat lacrimal gland. Mol Cell Biochem. 2003;248:7–16
  • Cripps MM, Bennett DJ. Proenkephalin A derivatives in lacrimal gland: Occurrence and regulation of lacrimal function. Exp Eye Res. 1992;54,829–834.
  • Kelleher RS, Hann LE, Edwards JA, et al. Endocrine, neural, and immune control of secretory component output by lacrimal gland acinar cells. J Immunol. 1991;146:3405–3412.
  • Lambert RW, Kelleher RS, Wickham LA, et al. Neuroendocrinimmune modulation of secretory component production by rat lacrimal, salivary, and intestinal epithelial cells. Invest Ophthalmol Vis Sci. 1994;35:1192–1201.
  • Hodges RR, Rios JD, Vrouvlianis J, et al. Roles of protein kinase C, Ca2+, Pyk2, and c-Src in agonist activation of rat lacrimal gland p42/p44 MAPK. Invest Ophthalmol Vis Sci. 2006;47:3352–3359.
  • Zoukhri D, Macari E, Choi SH, et al. c-Jun NH2-terminal kinase mediates interleukin-1β-induced inhibition of lacrimal gland secretion. J Neurochem. 2006;96:126–135.
  • Kukkonen-Harjula K, Kauppinen K. How the sauna affects the endocrine system. Ann Clin Res. 1988;20:262–266.
  • Vähä-Eskeli K, Erkkola R, Irjala K, et al. Effect of thermal stress on serum prolactin, cortisol and plasma arginine vasopressin concentration in the pregnant and non-pregnant state. Eur J Obstet Gynecol Reprod Biol. 1991;42:1–8.
  • Wang Y, Chiu CT, Nakamura T, et al. Elevated prolactin redirects secretory vesicle traffic in rabbit lacrimal acinar cells. Am J Physiol Endocrinol Metab. 2007;292:E1122–E1134.
  • Wang Y, Chiu CT, Nakamura T, et al. Traffic of endogenous, over-expressed, and endocytosed prolactin in rabbit lacrimal acinar cells. Exp Eye Res. 2007;85:749–761.
  • Mircheff AK. Adaptive immune system and the eye. Mucosal immunity. In: Dartt DA (Ed.). Encyclopedia of the Eye, Vol 1. Oxford: Elsevier, Academic Press, 2010; pp. 33–40.
  • Maynard CL, Weaver CT. Diversity in the contribution of interleukin-10 to T-cell-mediated immune regulation. Immunol Rev. 2008;226:219–233.
  • Smith TR, Kumar V. Revival of CD8+ TReg-mediated suppression. Trends Immunol. 2008;29:337–342.
  • Schechter JE, Warren DW, Mircheff AK. A lacrimal gland is a lacrimal gland, but rodents’ and rabbits’ are not human. The Ocular Surface. 2010;8:111–134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.