317
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Effect of Robo4 on Retinal Endothelial Permeability

, , , , , , & show all
Pages 128-136 | Received 15 Dec 2011, Accepted 02 Oct 2012, Published online: 19 Nov 2012

REFERENCES

  • Carney MD, Paylor RR, Cunha-Vaz JG, Jampol LM, Goldberg MF. Iatrogenic choroidal neovascularization in sickle cell retinopathy. Ophthalmology 1986;93:1163–1168.
  • Dorchy H. Characterization of early stages of diabetic retinopathy. Importance of the breakdown of the blood-retinal barrier. Diabetes Care 1993;16:1212–1214.
  • Vinores SA, Küchle M, Derevjanik NL, Henderer JD, Mahlow J, Green WR et al. Blood-retinal barrier breakdown in retinitis pigmentosa: light and electron microscopic immunolocalization. Histol Histopathol 1995;10:913–923.
  • Vinores SA, Derevjanik NL, Ozaki H, Okamoto N, Campochiaro PA. Cellular mechanisms of blood-retinal barrier dysfunction in macular edema. Doc Ophthalmol 1999;97:217–228.
  • Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R. Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 2002;79:547–552.
  • Okada Y, Yano K, Jin E, Funahashi N, Kitayama M, Doi T et al. A three-kilobase fragment of the human Robo4 promoter directs cell type-specific expression in endothelium. Circ Res 2007;100:1712–1722.
  • Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien CB et al. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol 2003;261:251–267.
  • Seth P, Lin Y, Hanai J, Shivalingappa V, Duyao MP, Sukhatme VP. Magic roundabout, a tumor endothelial marker: expression and signaling. Biochem Biophys Res Commun 2005;332:533–541.
  • Suchting S, Heal P, Tahtis K, Stewart LM, Bicknell R. Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration. FASEB J 2005;19:121–123.
  • Kaur S, Castellone MD, Bedell VM, Konar M, Gutkind JS, Ramchandran R. Robo4 signaling in endothelial cells implies attraction guidance mechanisms. J Biol Chem 2006;281:11347–11356.
  • Sheldon H, Andre M, Legg JA, Heal P, Herbert JM, Sainson R et al. Active involvement of Robo1 and Robo4 in filopodia formation and endothelial cell motility mediated via WASP and other actin nucleation-promoting factors. FASEB J 2009;23:513–522.
  • Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002;420:629–635.
  • Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 2008;14:448–453.
  • Jones CA, Nishiya N, London NR, Zhu W, Sorensen LK, Chan AC et al. Slit2-Robo4 signalling promotes vascular stability by blocking Arf6 activity. Nat Cell Biol 2009;11:1325–1331.
  • Lum H, Malik AB. Regulation of vascular endothelial barrier function. Am J Physiol 1994;267:L223–L241.
  • Harhaj NS, Antonetti DA. Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 2004;36:1206–1237.
  • Feldman GJ, Mullin JM, Ryan MP. Occludin: structure, function and regulation. Adv Drug Deliv Rev 2005;57:883–917.
  • Erickson KK, Sundstrom JM, Antonetti DA. Vascular permeability in ocular disease and the role of tight junctions. Angiogenesis 2007;10:103–117.
  • Fischer S, Wobben M, Marti HH, Renz D, Schaper W. Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res 2002;63:70–80.
  • Jin M, Barron E, He S, Ryan SJ, Hinton DR. Regulation of RPE intercellular junction integrity and function by hepatocyte growth factor. Invest Ophthalmol Vis Sci 2002;43:2782–2790.
  • Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 1998;273:29745–29753.
  • Van Itallie CM, Fanning AS, Bridges A, Anderson JM. ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton. Mol Biol Cell 2009;20:3930–3940.
  • Yu PK, Yu DY, Cringle SJ, Su EN. Endothelial F-actin cytoskeleton in the retinal vasculature of normal and diabetic rats. Curr Eye Res 2005;30:279–290.
  • Shen L, Turner JR. Actin depolymerization disrupts tight junctions via caveolae-mediated endocytosis. Mol Biol Cell 2005;16:3919–3936.
  • Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev 2006;86:279–367.
  • Hirose A, Tanikawa T, Mori H, Okada Y, Tanaka Y. Advanced glycation end products increase endothelial permeability through the RAGE/Rho signaling pathway. FEBS Lett 2010;584:61–66.
  • Bailly M, Jones GE. Polarised migration: cofilin holds the front. Curr Biol 2003;13:R128–R130.
  • Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003;112:453–465.
  • Ozawa T, Araki N, Yunoue S, Tokuo H, Feng L, Patrakitkomjorn S et al. The neurofibromatosis type 1 gene product neurofibromin enhances cell motility by regulating actin filament dynamics via the Rho-ROCK-LIMK2-cofilin pathway. J Biol Chem 2005;280:39524–39533.
  • Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 2002;108:233–246.
  • Kobayashi M, Nishita M, Mishima T, Ohashi K, Mizuno K. MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO J 2006;25:713–726.
  • Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C. Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol 2008;87:649–667.
  • Huang L, Yu W, Li X, Xu Y, Niu L, He X et al. Expression of Robo4 in the fibrovascular membranes from patients with proliferative diabetic retinopathy and its role in RF/6A and RPE cells. Mol Vis 2009;15:1057–1069.
  • Gorovoy M, Koga T, Shen X, Jia Z, Yue BY, Voyno-Yasenetskaya T. Downregulation of LIM kinase 1 suppresses ocular inflammation and fibrosis. Mol Vis 2008;14:1951–1959.
  • Guo XH, Huang QB, Chen B, Wang SY, Li Q, Zhu YJ et al. Advanced glycation end products induce actin rearrangement and subsequent hyperpermeability of endothelial cells. APMIS 2006;114:874–883.
  • Sheikpranbabu S, Kalishwaralal K, Lee KJ, Vaidyanathan R, Eom SH, Gurunathan S. The inhibition of advanced glycation end-products-induced retinal vascular permeability by silver nanoparticles. Biomaterials 2010;31:2260–2271.
  • Stevens T, Garcia JG, Shasby DM, Bhattacharya J, Malik AB. Mechanisms regulating endothelial cell barrier function. Am J Physiol Lung Cell Mol Physiol 2000;279:L419–L422.
  • Scott RW, Olson MF. LIM kinases: function, regulation and association with human disease. J Mol Med 2007;85:555–568.
  • Marlow R, Binnewies M, Sorensen LK, Monica SD, Strickland P, Forsberg EC et al. Vascular Robo4 restricts proangiogenic VEGF signaling in breast. Proc Natl Acad Sci USA 2010;107:10520–10525.
  • London NR, Zhu W, Bozza FA, Smith MC, Greif DM, Sorensen LK et al. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med 2010;2:23ra19.
  • Koch AW, Mathivet T, Larrivée B, Tong RK, Kowalski J, Pibouin-Fragner L et al. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev Cell 2011;20:33–46.
  • Huang L, Yu W, Li X, Niu L, Li K, Li J. Robo1/robo4: different expression patterns in retinal development. Exp Eye Res 2009;88:583–588.
  • Youakim A, Ahdieh M. Interferon-gamma decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. Am J Physiol 1999;276:G1279–G1288.
  • Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M et al. Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 1997;110 (Pt 14):1603–1613.
  • Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, Gardner TW. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes 1998;47:1953–1959.
  • Lai CH, Kuo KH, Leo JM. Critical role of actin in modulating BBB permeability. Brain Res Brain Res Rev 2005;50:7–13.
  • Liu LB, Xue YX, Liu YH, Wang YB. Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton. J Neurosci Res 2008;86:1153–1168.
  • Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. Int Rev Cytol 2007;258:1–82.
  • Bernstein BW, Bamburg JR. ADF/cofilin: a functional node in cell biology. Trends Cell Biol 2010;20:187–195.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.