349
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Protection of Cone Photoreceptor M-Opsin Degradation with 9-Cis-β-Carotene-Rich Alga Dunaliella bardawil in Rpe65−/− Mouse Retinal Explant Culture

, , , , &
Pages 1221-1231 | Received 08 Aug 2013, Accepted 15 Mar 2014, Published online: 09 Jul 2014

References

  • Palczewski K. G protein-coupled receptor rhodopsin. Ann Rev Biochem 2006;75:743–767
  • Nathans J. Rhodopsin: structure, function, and genetics. Biochemistry 1992;31:4923–4931
  • Ridge KD, Palczewski K. Visual rhodopsin sees the light: structure and mechanism of G protein signaling. J Biol Chem 2007;282:9297–9301
  • Travis GH, Golczak M, Moise AR, Palczewski K. Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. Ann Rev Pharmacol Toxicol 2007;47:469–512
  • Hamel CP, Tsilou E, Pfeffer BA, Hooks JJ, Detrick B, Redmond TM. Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. J Biol Chem 1993;268:15751–15757
  • Redmond TM, Yu S, Lee E, Bok D, Hamasaki D, Chen N, et al. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet 1998;20:344–351
  • Jin M, Li S, Moghrabi WN, Sun H, Travis GH. RPE65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 2005;122:449–459
  • Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma JX. RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci USA 2005;102:12413–12418
  • Redmond TM, Poliakov E, Yu S, Tsai JY, Lu Z, Gentleman S. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc Natl Acad Sci USA 2005;102:13658–13663
  • Gu SM, Thompson DA, Srikumari CR, Lorenz B, Finckh U, Nicoletti A, et al. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat Genet 1997;17:194–197
  • Marlhens F, Bareil C, Griffoin JM, Zrenner E, Amalric P, Eliaou C, et al. Mutations in RPE65 cause Leber’s congenital amaurosis. Nat Genet 1997;7:139–141
  • Morimura H, Fishman GA, Grover SA, Fulton AB, Berson EL, Dryja TP. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis. Proc Natl Acad Sci USA 1998;95:3088–3093
  • Thompson DA, Gyurus P, Fleischer LL, Bingham EL, McHenry CL, Apfelstedt-Sylla E, et al. Genetics and phenotypes of RPE65 mutations in inherited retinal degeneration. Invest Ophthalmol Vis Sci 2000;41:4293–4299
  • Van Hooser JP, Aleman TS, He YG, Cideciyan AV, Kuksa V, Pittler SJ, et al. Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness. Proc Natl Acad Sci USA 2000;97:8623–8628
  • Seeliger MW, Grimm C, Ståhlberg F, Friedburg C, Jaissle G, Zrenner E, et al. New views on RPE65 deficiency: the rod system is the source of vision in a mouse model of Leber congenital amaurosis. Nat Genet 2001;29:70–74
  • Ablonczy Z, Crouch RK, Goletz PW, Redmond TM, Knapp DR, Ma JX, et al. 11-Cis-retinal reduces constitutive opsin phosphorylation and improves quantum catch in retinoid-deficient mouse rod photoreceptors. J Biol Chem 2002;277:40491–40498
  • Van Hooser JP, Liang Y, Maeda T, Kuksa V, Jang GF, He YG, et al. Recovery of visual functions in a mouse model of Leber congenital amaurosis. J Biol Chem 2002;277:19173–19182
  • Znoiko SL, Rohrer B, Lu K, Lohr HR, Crouch RK, Ma JX, et al. Downregulation of cone-specific gene expression and degeneration of cone photoreceptors in the Rpe65−/− mouse at early ages. Invest Ophthalmol Vis Sci 2005;46:1473–1479
  • Cottet S, Michaut L, Boisset G, Schlecht U, Gehring W, Schlorderet DF. Biological characterization of gene response in Rpe65−/− mouse model of Leber’s congenital amaurosis during progression of the disease. FASEB J 2006;20:2036–2049
  • Sato K, Ozaki T, Ishiguro S, Nakazawa M. M-opsin protein degradation is inhibited by MG-132 in Rpe65−/− retinal explant culture. Mol Vis 2012;18:1516–1525
  • Sato K, Nakazawa M, Takeuchi K, Mizukoshi S, Ishiguro S. S-opsin protein is incompletely modified during N-glycan processing in Rpe65−/− mice. Exp Eye Res 2010;91:54–62
  • De Grip WJ. Thermal stability of rhodopsin and opsin in some novel detergents. Methods Enzymol 1982;81:256–265
  • Khan SM, Bolen W, Hargrave PA, Santoro MM, McDowell JH. Differential scanning calorimetry of bovine rhodopsin in rod-outer-segment disk membranes. Eur J Biochem 1991;200:53–59
  • Landin JS, Katragadda M, Albert AD. Thermal destabilization of rhodopsin and opsin by proteolytic cleavage in bovine rod outer segment disk membranes. Biochemistry 2001;40:11176–11183
  • Pepperberg DR, Brown PK, Lurie M, Dowling JE. Visual pigment and photoreceptor sensitivity in the isolated skate retina. J Gen Physiol 1978;71:369–396
  • Maeda A, Maeda T, Palczewski K. Improvement in rod and cone function in mouse model of fundus albipunctatus after pharmacologic treatment with 9-cis-retinal. Invest Ophthalmol Vis Sci 2006;47:4540–4546
  • Maeda T, Maeda A, Casadesus G, Palczewski K, Margaron P. Evaluation of 9-cis-retinyl acetate therapy in Rpe65−/− mice. Invest Ophthalmol Vis Sci 2009;50:4368–4378
  • Palczewski K. Retinoids for treatment of retinal diseases. Trend Pharmacol Sci 2010;31:284–295
  • Maeda T, Dong Z, Jin H, Sawada O, Gao S, Uthhede D, et al. QLT091001, a 9-cis-retinal analog, is well-tolerated by retinas of mice with impaired visual cycles. Invest Ophthalmol Vis Sci 2013;54:155–466
  • Ben-Amotz A, Mokady S, Avron M. The β-carotene-rich alga Dunaliella bardawil as a source of retinol in a rat diet. Br J Nutr 1988;59:443–449
  • Rotenstreich Y, Harats D, Shaish A, Pras E, Belkin M. Treatment of a retinal dystrophy, fundus albipunctatus, with oral 9-cis-β-carotene. Br J Ophthalmol 2010;94:616–621
  • Rotenstreich Y, Belkin M, Sadetzki S, Chetrit A, Ferman-Attar G, Sher I, et al. Treatment with 9-cis β−carotene-rich powder in patients with retinitis pigmentosa. A randomized crossover trial. JAMA Ophthalmol 2013. [Epub ahead of print]. doi:10.1001/jamaophthalmol.2013.147
  • Maeda T, Perusek L, Amengual J, Babino D, Palczewski K, von Lintig J. Dietary 9-cis-β,β-carotene fails to rescue vision in mouse models of Leber congenital amaurosis. Mol Pharmacol 2011;80:943–952
  • Osakada F, Ooto S, Akagi T, Mandai M, Akaike A, Takahashi M. Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci 2007;27:4210–4219
  • Mizukoshi S, Nakazawa M, Sato K, Ozaki T, Metoki T, Ishiguro S. Activation of mitochondrial calpain and release of apoptosis-inducing factor from mitochondria in RCS rat retinal degeneration. Exp Eye Res 2010;91:353–361
  • Ozaki T, Nakazawa M, Yamashita T, Sorimachi H, Hata S, Tomita H, et al. Intravitreal injection or topical eye-drop application of a µ-calpain C2L domain peptide protects against photoreceptor cell death in Royal College of Surgeons’ rats, a model of retinitis pigmentosa. Biochim Biophys Acta 2012;1822:1783–1795
  • Chichili GR, Nohr D, Schäffer M, von Lintig J, Biesalski HK. β-Carotene conversion into vitamin A in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2005;46:3562–3569
  • Yan W, Jang GF, Haeselleer F, Esumi N, Chang J, Kerrigan M, et al. Cloning and characterization of a human β, β-carotene-15, 15'-deoxygenase that is highly expressed in the retinal pigment epithelium. Genomics 2001;72:193–202
  • Maeda T, Cideciyan AV, Maeda A, Golczak M, Aleman TS, Jacobson SG, et al. Loss of cone photoreceptors caused by chromophore depletion is partially prevented by the artificial chromophore pro-drug, 9-cis-retinyl acetate. Hum Mol Genet 2009;18:2277–2287
  • Gearhart PM, Gearhart C, Thompson DA, Peterson-Jones SM. Improvement of visual performance with intravitreal administration of 9-cis-retinal in Rpe65-mutant dogs. Arch Ophthalmol 2010;128:1442–1448
  • Tang PH, Fan J, Goletz PW, Wheless L, Crouch RK. Effective and sustained delivery of hydrophobic retinoids to photoreceptors. Invest Ophthalmol Vis Sci 2010;51:5958–5964
  • Woodruff ML, Wang Z, Chung HY, Redmond TM, Fain GL, Lem J. Spontaneous activity of opsin apoprotein in a cause of Leber congenital amaurosis. Nat Genet 2003;35:158–164
  • Zhang H, Fan J, Li S, Karan S, Rohrer B, Palczewski K, et al. Trafficking of membrane-associated proteins to cone photoreceptor outer segments requires the chromophore 11-cis-retinal. J Neurosci 2008;28:4008–4014
  • Bandyopadhyay M, Kono M, Rohrer B. Explant cultures of Rpe65−/− mouse retina: a model to investigate cone opsin trafficking. Mol Vis 2013;19:1149–1157
  • Ben-Amotz A, Lers A, Avron M. Stereoisomers of β-carotene and phytoene in the alga Dunaliella bardawil. Plant Physiol 1988;86:1286–1291
  • Harari A, Harats D, Marko D, Cohen H, Barshack I, Kamari Y, et al. A 9-cis β-carotene-enriched diet inhibits atherogenesis and fatty liver formation in LDL receptor knockout mice. J Nutr 2008;138:1923–1930
  • Bendich A. The safety of β-carotene. Nutr Cancer 1988;11:207–214
  • Shaish A, Harari A, Hananshvili L, Cohen H, Bitzur R, Luvish T, et al. 9-Cis β-carotene-rich powder of the alga Dunaliella bardawil increases plasma HDL-cholesterol in fibrate-treated patients. Atherosclerosis 2006;189:215–221

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.