334
Views
15
CrossRef citations to date
0
Altmetric
Original Article

Description of the Sphingolipid Content and Subspecies in the Diabetic Cornea

, , , &
Pages 1204-1210 | Received 10 Oct 2014, Accepted 18 Nov 2014, Published online: 26 Nov 2014

References

  • Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 2009;32:1335–1343
  • Gardner DG, Shoback D. Greenspan’s basic & clinical endocrinology. 9th ed. New York: McGraw-Hill Medical; 2011
  • Skarbez K, Priestley Y, Hoepf M, Koevary SB. Comprehensive review of the effects of diabetes on ocular health. Expert Rev Ophthalmol 2010;5:557–577
  • Herse PR. A review of manifestations of diabetes mellitus in the anterior eye and cornea. Am J Optom Physiol Opt 1988;65:224–230
  • Owen CG, Newsom RS, Rudnicka AR, Ellis TJ, Woodward EG. Vascular response of the bulbar conjunctiva to diabetes and elevated blood pressure. Ophthalmology 2005;112:1801–1808
  • Schultz RO, Matsuda M, Yee RW, Edelhauser HF, Schultz KJ. Corneal endothelial changes in type I and type II diabetes mellitus. Am J Ophthalmol 1984;98:401–410
  • Mishima S. The effects of the denervation and the stimulation of the sympathetic and the trigeminal nerve on the mitotic rate of the corneal epithelium in the rabbit. Jpn J Ophthalmol 1957;1:65–73
  • Alper MG. The anesthetic eye: an investigation of changes in the anterior ocular segment of the monkey caused by interrupting the trigeminal nerve at various levels along its course. Trans Am Ophthalmol Soc 1975;73:323–365
  • Araki K, Ohashi Y, Kinoshita S, Hayashi K, Kuwayama Y, Tano Y. Epithelial wound healing in the denervated cornea. Curr Eye Res 1994;13:203–211
  • Baker KS, Anderson SC, Romanowski EG, Thoft RA, SundarRaj N. Trigeminal ganglion neurons affect corneal epithelial phenotype. Influence on type VII collagen expression in vitro. IOVS 1993;34:137–144
  • Willi C, Bodenmann P, Ghali WA, Faris PD, Cornuz J. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 2007;298:2654–2664
  • Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005;353:2643–2653
  • The effect of intensive diabetes therapy on the development and progression of neuropathy. The Diabetes Control and Complications Trial Research Group. Ann Intern Med 1995;122:561–568
  • Cavanagh PR. Therapeutic footwear for people with diabetes. Diabetes MetabResearch Rev 2004;20 Suppl 1:S51–S55
  • Foulks GN, Thoft RA, Perry HD, Tolentino FI. Factors related to corneal epithelial complications after closed vitrectomy in diabetics. Arch Ophthalmol 1979;97:1076–1078
  • Chung H, Tolentino FI, Cajita VN, Acosta J, Refojo MF. Reevaluation of corneal complications after closed vitrectomy. Arch Ophthalmol 1988;106:916–919
  • Saini JS, Khandalavla B. Corneal epithelial fragility in diabetes mellitus. CanJ Ophthalmol 1995;30:142–146
  • Hatchell DL, Magolan JJ, Jr Besson MJ, Goldman AI, Pederson HJ, Schultz KJ. Damage to the epithelial basement membrane in the corneas of diabetic rabbits. Arch Ophthalmol 1983;101:469–471
  • Dahlquist G. The aetiology of type 1 diabetes: an epidemiological perspective. Acta paediatr 1998;87:5–10
  • Bono VH. Review of mechanism of action studies of nitrosoureas. Cancer Treat Rep 1976;60:699–702
  • Wang ZY, Gleichmann H. GLUT2 in pancreatic islets – crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes 1998;47:50–56
  • Zahner D, Malaisse WJ. Kinetic behaviour of liver glucokinase in diabetes. I. Alteration in streptozotocin-diabetic rats. J Diabetes Res 1990;14:101–108
  • Bolzan AD, Bianchi MS. Genotoxicity of streptozotocin. Mutat Res 2002;512:121–134
  • Yang Z, Chen M, Fialkow LB, Ellett JD, Wu R, Nadler JL. The novel anti-inflammatory compound, lisofylline, prevents diabetes in multiple low-dose streptozotocin-treated mice. Pancreas 2003;26:e99–e104
  • Mensah-Brown EP, Stosic Grujicic S, Maksimovic D, Jasima A, Shahin A, Lukic ML. Downregulation of apoptosis in the target tissue prevents low-dose streptozotocin-induced autoimmune diabetes. Mol Immunol 2002;38:941–946
  • Muller A, Schott-Ohly P, Dohle C, Gleichmann H. Differential regulation of Th1-type and Th2-type cytokine profiles in pancreatic islets of C57BL/6 and BALB/c mice by multiple low doses of streptozotocin. Immunobiology 2002;205:35–50
  • Holstad M, Sandler S. A transcriptional inhibitor of TNF-alpha prevents diabetes induced by multiple low-dose streptozotocin injections in mice. J Autoimmun 2001;16:441–447
  • Zuccollo A, Navarro M, Frontera M, Cueva F, Carattino M, Catanzaro OL. The involvement of kallikrein-kinin system in diabetes type I (insulitis). Immunopharmacology 1999;45:69–74
  • Herold KG, Lenschow DJ, Bluestone JA. CD28/B7 regulation of autoimmune diabetes. Immunol Res 1997;16:71–84
  • Reddy S, Wu D, Elliott RB. Low-dose streptozotocin causes diabetes in severe combined immunodeficient (Scid) mice without immune cell infiltration of the pancreatic-islets. Autoimmunity 1995;20:83–92
  • Arata M, Fabiano de Bruno L, Goncalvez Volpini WM, Quintans JC, D’Alessandro VG, Braun M, et al. Beta-cell function in mice injected with mononuclear splenocytes from multiple-dose streptozotocin diabetic mice. Proc Soc Exp Biol Med 1994;206:76–82
  • Stride A, Hattersley AT. Different genes, different diabetes: lessons from maturity-onset diabetes of the young. Ann Med 2002;34:207–216
  • Krook A, O’Rahilly S. Mutant insulin receptors in syndromes of insulin resistance. Baillieres Best Pract ResClin Endocrinol Metab 1996;10:97–122
  • Maassen JA, T Hart LM, Van Essen E, Heine RJ, Nijpels G, Jahangir Tafrechi RS, et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes 2004;53:S103–S109
  • Leibel RL, Chung WK, Chua SC. Jr The molecular genetics of rodent single gene obesities. The JBC 1997;272:31937–31940
  • Chagnon YC, Bouchard C. Genetics of obesity: advances from rodent studies. TIG 1996;12:441–444
  • Zhang YY, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homolog. Nature 1994;372:425–432
  • Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996;379:632–635
  • Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CJ, et al. Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 1996;13:18–19
  • Bu S, Asano Y, Bujor A, Highland K, Hant F, Trojanowska M. Dihydrosphingosine 1-phosphate has a potent antifibrotic effect in scleroderma fibroblasts via normalization of phosphatase and tensin homolog levels. Arthritis Rheum 2010;62:2117–2126
  • Li C, Jiang X, Yang L, Liu X, Yue S, Li L. Involvement of sphingosine 1-phosphate (SIP)/S1P3 signaling in cholestasis-induced liver fibrosis. Am J Pathol 2009;175:1464–1472
  • Shea BS, Brooks SF, Fontaine BA, Chun J, Luster AD, Tager AM. Prolonged exposure to sphingosine 1-phosphate receptor-1 agonists exacerbates vascular leak, fibrosis, and mortality after lung injury. Am J Respir Cell Mol Biol 2010;43:662–673
  • Swaney JS, Moreno KM, Gentile AM, Sabbadini RA, Stoller GL. Sphingosine-1-phosphate (S1P) is a novel fibrotic mediator in the eye. Exp Eye Res 2008;87:367–375
  • Takuwa N, Ohkura S, Takashima S, Ohtani K, Okamoto Y, Tanaka T, et al. S1P3-mediated cardiac fibrosis in sphingosine kinase 1 transgenic mice involves reactive oxygen species. Cardiovasc Res 2010;85:484–493
  • Wijesinghe DS, Allegood JC, Gentile LB, Fox TE, Kester M, Chalfant CE. Use of high performance liquid chromatography-electrospray ionization-tandem mass spectrometry for the analysis of ceramide-1-phosphate levels. J Lipid Res 2010;51:641–651
  • Wijesinghe DS, Brentnall M, Mietla JA, Hoeferlin LA, Diegelmann RF, Boise LH, et al. Ceramide kinase is required for a normal eicosanoid response and the subsequent orderly migration of fibroblasts. J Lipid Res 2014;55:1298–1309
  • Mietla JA, Wijesinghe DS, Hoeferlin LA, Shultz MD, Natarajan R, Fowler AA, et al. Characterization of eicosanoid synthesis in a genetic ablation model of ceramide kinase. J Lipid Res 2013;54:1834–1847
  • Poretsky L. Principles of diabetes mellitus. 2nd ed. New York: Springer; 2009
  • Lambert P, Bingley PJ. What is type 1 diabetes? Medicine 2002;30:1–5
  • Rother KI. Focus on research: diabetes treatment – bridging the divide. New Engl J Med 2007;356:1499–1501
  • David GG, Dolores S. Greenspan's basic & clinical endocrinology, 9th ed, Chapter 17. New York: McGraw-Hill Medical; 2011
  • Riserus U, Willett WC, Hu FB. Dietary fats and prevention of type 2 diabetes. Prog Lipid Res 2009;48:44–51
  • Lutty GA. Effects of diabetes on the eye. IOVS 2013;54:ORSF81–7
  • Schultz RO, Van Horn DL, Peters MA, Klewin KM, Schutten WH. Diabetic keratopathy. Trans Am Ophthalmol Soc 1981;79:180–199
  • Schultz RO, Peters MA, Sobocinski K, Nassif K, Schultz KJ. Diabetic keratopathy as a manifestation of peripheral neuropathy. Am J Ophthalmol 1983;96:368–371
  • Dogru M, Katakami C, Inoue M. Tear function and ocular surface changes in noninsulin-dependent diabetes mellitus. Ophthalmology 2001;108:586–592
  • Yoon KC, Im SK, Seo MS. Changes of tear film and ocular surface in diabetes mellitus. Korean J Ophthalmol: KJO 2004;18:168–174
  • Goebbels M. Tear secretion and tear film function in insulin dependent diabetics. Br J Ophthalmol 2000;84:19–21
  • Saito J, Enoki M, Hara M, Morishige N, Chikama T, Nishida T. Correlation of corneal sensation, but not of basal or reflex tear secretion, with the stage of diabetic retinopathy. Cornea 2003;22:15–18
  • Inoue K, Kato S, Ohara C, Numaga J, Amano S, Oshika T. Ocular and systemic factors relevant to diabetic keratoepitheliopathy. Cornea 2001;20:798–801
  • Schwartz DE. Corneal sensitivity in diabetics. Arch Ophthalmol 1974;91:174–178
  • Rosenberg ME, Tervo TM, Immonen IJ, Muller LJ, Gronhagen-Riska C, Vesaluoma MH. Corneal structure and sensitivity in type 1 diabetes mellitus. IOVS 2000;41:2915–2921
  • Gekka M, Miyata K, Nagai Y, Nemoto S, Sameshima T, Tanabe T, et al. Corneal epithelial barrier function in diabetic patients. Cornea 2004;23:35–37
  • Gobbels M, Spitznas M, Oldendoerp J. Impairment of corneal epithelial barrier function in diabetics. Graefe’s Arch Clin Exp Ophthalmol 1989;227:142–144
  • Busted N, Olsen T, Schmitz O. Clinical Observations on the corneal thickness and the corneal endothelium in diabetes-mellitus. Brit J Ophthalmol 1981;65:687–690
  • Su DH, Wong TY, Wong WL, Saw SM, Tan DT, Shen SY, et al. Diabetes, hyperglycemia, and central corneal thickness: the Singapore Malay Eye Study. Ophthalmology 2008;115:964–968 e1
  • Saini JS, Mittal S. In vivo assessment of corneal endothelial function in diabetes mellitus. Arch Ophthalmol 1996;114:649–653
  • Lee JS, Oum BS, Choi HY, Lee JE, Cho BM. Differences in corneal thickness and corneal endothelium related to duration in diabetes. Eye 2006;20:315–318
  • Kolesnick R. Signal-Transduction through the sphingomyelin pathway. Mol Chem Neuropathol 1994;21:287–297
  • Green DR. Apoptosis and sphingomyelin hydrolysis: the flip side. J Cell Biol 2000;150:F5–F7
  • Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, et al. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 1994;180:525–535
  • Dbaibo GS, Pushkareva MY, Rachid RA, Alter N, Smyth MJ, Obeid LM, et al. p53-Dependent ceramide response to genotoxic stress. J Clin Invest 1998;102:329–339
  • Rotolo JA, Zhang J, Donepudi M, Lee H, Fuks Z, Kolesnick R. Caspase-dependent and -independent activation of acid sphingomyelinase signaling. J Biol Chem 2005;280:26425–26434
  • Dbaibo GS, El-Assaad W, Krikorian A, Liu B, Diab K, Idriss NZ, et al. Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death. FEBS Lett 2001;503:7–12
  • Taha TA, Mullen TD, Obeid LM. A house divided: ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death. Biochim Biophys Acta 2006;1758:2027–2036
  • Hanada K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 2003;1632:16–30
  • Kihara A, Igarashi Y. FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane. J Biol Chem 2004;279:49243–49250
  • Michel C, vanEchtenDeckert G. Conversion of dihydroceramide to ceramide occurs at the cytosolic face of the endoplasmic reticulum. FEBS Lett 1997;416:153–155
  • van Helvoort A, van’t Hof W, Ritsema T, Sandra A, van Meer G. Conversion of diacylglycerol to phosphatidylcholine on the basolateral surface of epithelial (Madin-Darby canine kidney) cells. Evidence for the reverse action of a sphingomyelin synthase. J Biol Chem 1994;269:1763–1769
  • Futerman AH, Stieger B, Hubbard AL, Pagano RE. Sphingomyelin synthesis in rat-liver occurs predominantly at the Cis and medial cisternae of the golgi-apparatus. J Biol Chem 1990;265:8650–8657
  • Perry RJ, Ridgway ND. Molecular mechanisms and regulation of ceramide transport. Biochim Biophys Acta 2005;1734:220–234
  • Sprong H, Kruithof B, Leijendekker R, Slot JW, van Meer G, van der Sluijs P. UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J Biol Chem 1998;273:25880–25888
  • van Meer G, Holthuis JC. Sphingolipid transport in eukaryotic cells. Biochim Biophys Acta 2000;1486:145–170
  • Marchesini N, Hannun YA. Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol 2004;82:27–44

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.