335
Views
7
CrossRef citations to date
0
Altmetric
Original Article

“Moonlighting” GAPDH Protein Localizes with AMPA Receptor GluA2 and L1 Axonal Cell Adhesion Molecule at Fiber Cell Borders in the Lens

, &
Pages 41-49 | Received 02 Sep 2014, Accepted 07 Dec 2014, Published online: 23 Jan 2015

References

  • Seidler NW. Functional diversity. Adv Exp Med Biol 2013;985:103–147
  • Campanella ME, Chu H, Low PS. Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane. Proc Natl Acad Sci USA 2005;102:2402–2407
  • Raje CI, Kumar S, Harle A, Nanda JS, Raje M. The macrophage cell surface glyceraldehyde-3-phosphate dehydrogenase is a novel transferrin receptor. J Biol Chem 2007;282:3252–3261
  • Glenting J, Beck HC, Vrang A, Riemann H, Ravn P, Hansen AM, et al. Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins. Microbiol Res 2013;168:245–253
  • Matta SK, Agarwal S, Bhatnagar R. Surface localized and extracellular Glyceraldehyde-3-phosphate dehydrogenase of Bacillus anthracis is a plasminogen binding protein. Biochim Biophys Acta 2010;1804:2111–2120
  • Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci USA 2004;101:16501–16506
  • Bae BI, Hara MR, Cascio MB, Wellington CL, Hayden MR, Ross CA, et al. Mutant huntingtin: nuclear translocation and cytotoxicity mediated by GAPDH. Proc Natl Acad Sci U S A 2006;103:3405–3409
  • Ringel AE, Ryznar R, Picariello H, Huang KL, Lazarus AG, Holmes SG. Yeast Tdh3 (glyceraldehyde 3-phosphate dehydrogenase) is a Sir2-interacting factor that regulates transcriptional silencing and rDNA recombination. PLoS Genet 2013;9:e1003871
  • Wang M, Li S, Zhang H, Pei L, Zou S, Lee FJ, et al. Direct interaction between GluR2 and GAPDH regulates AMPAR-mediated excitotoxicity. Mol Brain 2012;5:13
  • Zhai D, Li S, Wang M, Chin K, Liu F. Disruption of the GluR2/GAPDH complex protects against ischemia-induced neuronal damage. Neurobiol Dis 2013;54:392–403
  • Wu K, Aoki C, Elste A, Rogalski-Wilk AA, Siekevitz P. The synthesis of ATP by glycolytic enzymes in the postsynaptic density and the effect of endogenously generated nitric oxide. Proc Natl Acad Sci USA 1997;94:13273–13278
  • Rogalski-Wilk AA, Cohen RS. Glyceraldehyde-3-phosphate dehydrogenase activity and F-actin associations in synaptosomes and postsynaptic densities of porcine cerebral cortex. Cell Mol Neurobiol 1997;17:51–70
  • Makhina T, Loers G, Schulze C, Ueberle B, Schachner M, Kleene R. Extracellular GAPDH binds to L1 and enhances neurite outgrowth. Mol Cell Neurosci 2009;41:206–218
  • Zhai D, Chin K, Wang M, Liu F. Disruption of the nuclear p53-GAPDH complex protects against ischemia-induced neuronal damage. Mol Brain 2014;7:20
  • Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N, et al. Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 2008;10:866–873
  • Sen N, Hara MR, Ahmad AS, Cascio MB, Kamiya A, Ehmsen JT, et al. GOSPEL: a neuroprotective protein that binds to GAPDH upon S-nitrosylation. Neuron 2009;63:81–91
  • Linnemann D, Edvardsen K, Bock E. Developmental study of the cell adhesion molecule L1. Dev Neurosci 1988;10:34–42
  • Brene S, Messer C, Okado H, Hartley M, Heinemann SF, Nestler EJ. Regulation of GluR2 promoter activity by neurotrophic factors via a neuron-restrictive silencer element. Eur J Neurosci 2000;12:1525–1533
  • Calderone A, Jover T, Noh KM, Tanaka H, Yokota H, Lin Y, et al. Ischemic insults derepress the gene silencer REST in neurons destined to die. J Neurosci 2003;23:2112–2121
  • Bhattacharyya M, Nandanoor A, Osman M, Kasinathan C, Frederikse PH. NMDA Glutamate receptor NR1, NR2A and NR2B expression and NR2B Tyr-1472 phosphorylation in the lens. Neurochem Res 2014;1825--1832
  • Farooq M, Kaswala RH, Kleiman NJ, Kasinathan C, Frederikse PH. GluA2 AMPA glutamate receptor subunit exhibits codon 607 Q/R RNA editing in the lens. Biochem Biophys Res Commun 2012;418:273–277
  • Dai J, Buhusi M, Demyanenko GP, Brennaman LH, Hruska M, Dalva MB, et al. Neuron glia-related cell adhesion molecule (NrCAM) promotes topographic retinocollicular mapping. PLoS One 2013;8:e73000
  • Chauhan BK, Reed NA, Yang Y, Cermak L, Reneker L, Duncan MK, et al. A comparative cDNA microarray analysis reveals a spectrum of genes regulated by Pax6 in mouse lens. Genes Cells 2002;7:1267–1283
  • Lo WK, Wen XJ, Zhou CJ. Microtubule configuration and membranous vesicle transport in elongating fiber cells of the rat lens. Exp Eye Res 2003;77:615–626
  • Frederikse PH, Yun E, Kao HT, Zigler JS, Jr Sun Q, Qazi AS. Synapsin and synaptic vesicle protein expression during embryonic and post-natal lens fiber cell differentiation. Mol Vis 2004;10:794–804
  • Bitel CL, Perrone-Bizzozero NI, Frederikse PH. HuB/C/D, nPTB, REST4 and miR-124 regulators of neuronal cell identity are also utilized in the lens. Mol Vis 2010;16:2301–2316
  • Panova IG, Markitantova Iu B, Firsova NV, Podgornyi OV, Smirnova Iu A, Sukhikh GT, et al. Study of expression of beta-III tubulin in human eye tissues during prenatal development. Izv Akad Nauk Ser Biol 2008;2:146–150
  • Frederikse PH, Kasinathan C, Kleiman NJ. Parallels between neuron and lens fiber cell structure and molecular regulatory networks. Dev Biol 2012;368:255–260
  • Zhou CJ, Lo WK. Association of clathrin, AP-2 adaptor and actin cytoskeleton with developing interlocking membrane domains of lens fibre cells. Exp Eye Res 2003;77:423–432
  • Goebel-Goody SM, Baum M, Paspalas CD, Fernandez SM, Carty NC, Kurup P, et al. Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders. Pharmacol Rev 2012;64:65–87
  • Kwakowsky A, Schwirtlich M, Kooy F, Abraham I, Mate Z, Katarova Z, et al. GABA neurotransmitter signaling in the developing mouse lens: dynamic regulation of components and functionality. Dev Dynam 2008;237:3830–3841
  • Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL. GABAA, NMDA and AMPA receptors: a developmentally regulated ‘menage a trois’. Trends Neurosci 1997;20:523–529
  • Hell JW. CaMKII: claiming center stage in postsynaptic function and organization. Neuron 2014;81:249–265
  • Dai S, Hall DD, Hell JW. Supramolecular assemblies and localized regulation of voltage-gated ion channels. Physiol Rev 2009;89:411–452
  • Maddala R, Nagendran T, de Ridder GG, Schey KL, Rao PV. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins. PLoS One 2013;8:e64676
  • Akaneya Y, Sohya K, Kitamura A, Kimura F, Washburn C, Zhou R, et al. Ephrin-A5 and EphA5 interaction induces synaptogenesis during early hippocampal development. PLoS One 2010;5:e12486
  • Cooper MA, Son AI, Komlos D, Sun Y, Kleiman NJ, Zhou R. Loss of ephrin-A5 function disrupts lens fiber cell packing and leads to cataract. Proc Natl Acad Sci USA 2008;105:16620–16625
  • Gao CY, Zakeri Z, Zhu Y, He H, Zelenka PS. Expression of Cdk5, p35, and Cdk5-associated kinase activity in the developing rat lens. Dev Genet 1997;20:267–275
  • Zhang S, Edelmann L, Liu J, Crandall JE, Morabito MA. Cdk5 regulates the phosphorylation of tyrosine 1472 NR2B and the surface expression of NMDA receptors. J Neurosci 2008;28:415–424
  • Xu J, Chatterjee M, Baguley T, Brouillette J, Kurup P, Ghosh D, et al. Inhibitor of the tyrosine phosphatase STEP reverses cognitive deficits in a mouse model of Alzheimer’s disease. PLoS Biol 2014;12:17.3201
  • Lenstra JA, van Raaij AJ, Bloemendal H. One of the protein components of lens fiber membranes is glyceraldehyde 3-phosphate dehydrogenase. FEBS Lett 1982;148:263–266
  • Su S, Liu P, Zhang H, Li Z, Song Z, Zhang L, et al. Proteomic analysis of human age-related nuclear cataracts and normal lens nuclei. Invest Ophthalmol Vis Sci 2011;52:4182–4191
  • Kallunki P, Edelman GM, Jones FS. Tissue-specific expression of the L1 cell adhesion molecule is modulated by the neural restrictive silencer element. J Cell Biol 1997;138:1343–1354
  • Meech R, Kallunki P, Edelman GM, Jones FS. A binding site for homeodomain and Pax proteins is necessary for L1 cell adhesion molecule gene expression by Pax-6 and bone morphogenetic proteins. Proc Natl Acad Sci USA 1999;96:2420–2425
  • Zhao WQ, Santini F, Breese R, Ross D, Zhang XD, Stone DJ, et al. Inhibition of calcineurin-mediated endocytosis and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors prevents amyloid beta oligomer-induced synaptic disruption. J Biol Chem 2010;285:7619–7632
  • De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, et al. Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci USA 2009;106:1971–1976
  • Zhang Y, Kurup P, Xu J, Anderson GM, Greengard P, Nairn AC, et al. Reduced levels of the tyrosine phosphatase STEP block beta amyloid-mediated GluA1/GluA2 receptor internalization. J Neurochem 2011;119:664–672
  • Djogo N, Jakovcevski I, Muller C, Lee HJ, Xu JC, Jakovcevski M, et al. Adhesion molecule L1 binds to amyloid beta and reduces Alzheimer’s disease pathology in mice. Neurobiol Dis 2013;56:104–115
  • Zhou L, Barao S, Laga M, Bockstael K, Borgers M, Gijsen H, et al. The neural cell adhesion molecules L1 and CHL1 are cleaved by BACE1 protease in vivo. J Biol Chem 2012;287:25927–25940
  • Segovia L, Horwitz J, Gasser R, Wistow G. Two roles for mu-crystallin: a lens structural protein in diurnal marsupials and a possible enzyme in mammalian retinas. Mol Vis 1997;3:9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.