6
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Guanosine 5′-0-thiotriphosphate and NaF stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis in bovine corneal epithelium

Pages 487-496 | Received 12 Jan 1988, Accepted 16 Mar 1988, Published online: 02 Jul 2009

References

  • Abdel-Latif A. A. Calcium-mobilizing receptors, polyphosphoinositides and the generation of second messengers. Pharmacol. Rev. 1986; 38: 227–272
  • Fisher S. K., Agranoff B. W. Receptor activation and inositol lipid hydrolysis in neural tissues. J. Neurochem. 1987; 48: 999–1017
  • Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 1984; 312: 315–321
  • Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 1984; 308: 693–698
  • Cockcroft S., Gomperts B. D. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature (London) 1985; 314: 534–536
  • Litosch I., Wallis C., Fain J. N. 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown. J. Biol. Chem. 1985; 260: 5464–5471
  • Uhing R. J., Prpic V., Jiang J., Exton J. H. Hormone-stimulated polyphosphoinositide breakdown in rat liver plasma membranes. J. Biol. Chem. 1986; 261: 2140–2146
  • Akhtar R. A. Effects of norepinephrine and 5-hydroxytryptamine on phosphoinositide-PO, turnover in rabbit cornea. Exp. Eye Res. 1987; 44: 849–862
  • Akhtar R. A., Abdel-Latif A. A. Carbachol causes rapid phosphodiesteratic cleavage of phosphatidylinositol 4,5-bisphosphate and accumulation of inositol phosphates in rabbit iris smooth muscle: Prazosin inhibits norepinephrine-and ionophore A23187-stimulated release of inositol phosphates. Biochem. J. 1984; 224: 291–300
  • Abdel-Latif A. A., Akhtar R. A., Hawthorne J. N. Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with [32P]phosphate. Biochem. J. 1977; 162: 61–73
  • Akhtar R. A., Taft W. C., Abdel-Latif A. A. Effects of corticotropin-(1–24)-tetracosapeptide on polyphosphoinositide metabolism and protein phosphorylation in rabbit iris subcellular fractions. J. Neurochem. 1983; 41: 1460–1468
  • Bartlett G. R. Phosphorus assay in column chromatography. J. Biol. Chem. 1959; 234: 466–468
  • Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951; 193: 265–275
  • Gilman A. G. G-protein and dual control of adenylate cyclase. Cell 1984; 36: 577–579
  • Burch R. M., Luini A., Axelrod J. Phospholipase A2 and phospholipase C are activated by distinct GTP-binding proteins in response to α1-adrenergic stimulation in FRTL5 thyroid cells. J. Biol. Chem. 1986; 83: 7201–7205
  • Lapetina E. G., Reep B. R. Specific binding of [γ-32P]GTP to cytosolic and membrane-bound proteins of human platelets correlates with the activation of phospholipase C. Proc. Natl. Acad. Sci. USA 1987; 84: 2261–2265
  • Bradford P. G., Rubin R. P. Guanine nucleotide regulation of phospholipase C activity in permeabilized rabbit neutrophils. Biochem. J. 1986; 239: 97–102
  • Bigay J., Deterre P., Pfister C., Chabre M. Fluoroaluminates activate transducin-GDP by mimicking the γ-phosphate of GTP in its binding site. FEBS Lett. 1985; 191: 181–185
  • Blackmore P. F., Bocckino S. B., Waynick L. E., Exton J. H. Role of a guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5-bisphosphate by calcium-mobilizing hormones and the control of cell calcium. Studies utilizing aluminum fluoride. J. Biol. Chem. 1985; 260: 14477–14483
  • Taylor C. W., Merritt J. E., Putney J. W., Rubin R. P. A guanine nucleotide-dependent regulatory protein couples substance P receptors to phospholipase C in rat parotid gland. Biochem. Biophys. Res. Commun. 1986; 136: 362–368
  • Strand C. F., Parente J. E., Wong K. Use of fluoride ion as a probe for the guanine nucleotide-binding protein involved in the phosphoinositide-dependent neutrophil transducin pathway. FEBS Lett. 1986; 206: 20–24
  • Chung S. M., Proia A. D., Klintworth G. K., Watson S. P., Lapetina E. G. Deoxycholate induces the preferential hydrolysis of polyphosphoinositides by human platelet and rat corneal phospholipase C. Biochem. Biophys. Res. Commun. 1985; 129: 411–416
  • Bazan H. E.P., King W. D., Rossowska M. Metabolism of phosphoinositides and inositol polyphosphates in rabbit corneal epithelium. Exp. Eye Res. 1985; 4: 793–801
  • Straub R. E., Gershengorn M. C. Thyrotropin-releasing hormone and GTP activate inositol trisphosphate formation in membranes isolated from rat pituitary cells. J. Biol. Chem. 1986; 261: 2712–2717
  • Brandt S. J., Dougherty R. W., Lapetina E. G., Niedel J. E. Pertussis toxin inhibits chemotactic peptide-stimulated generation of inositol phosphates and lysosomal enzyme secretion in human leukemic (HL-60) cells. Proc. Natl. Acad. Sci. USA 1985; 82: 3277–3280
  • Smith C. D., Cox C. C., Snydennan R. Receptor-coupled activation of phosphoinositide-specific phospholipase C by an N-protein. Science 1986; 232: 97–100

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.