371
Views
5
CrossRef citations to date
0
Altmetric
Genetics

Differential gene expression profiles of peripheral blood mononuclear cells in childhood asthma

, PhD, , MM, , MM, , PhD & , PhD
Pages 343-352 | Received 04 Jul 2014, Accepted 27 Sep 2014, Published online: 06 Nov 2014

References

  • Chen YZ. Comparative analysis of the state of asthma prevalence in children from two nation-wide surveys in 1990 and 2000 year. Zhonghua Jie He He Hu Xi Za Zhi 2004;27:112–116
  • Bai J, Zhao J, Shen KL, Xiang L, Chen AH, Huang S, Huang Y, et al. Current trends of the prevalence of childhood asthma in three Chinese cities: a multicenter epidemiological survey. Biomed Environ Sci 2010;23:453–457
  • Huang HR, Zhong YQ, Wu JF. The association between IFN-gamma and IL-4 genetic polymorphisms and childhood susceptibility to bronchial asthma. Gene 2012;494:96–101
  • March ME, Sleiman PM, Hakonarson H. Genetic polymorphisms and associated susceptibility to asthma. Int J Gen Med 2013;6:253–265
  • Di Valentin E, Crahay C, Garbacki N, Hennuy B, Gueders M, Noel A, Foidart JM, et al. New asthma biomarkers: lessons from murine models of acute and chronic asthma. Am J Physiol Lung Cell Mol Physiol 2009;296:L185–L197
  • Park SG, Choi JW, Kim HJ, Roh GS, Bok J, Go MJ, Kwack K, et al. Genome-wide profiling of antigen-induced time course expression using murine models for acute and chronic asthma. Int Arch Allergy Immunol 2008;146:44–56
  • Dorsam GP, Hoselton SA, Sandy AR, Samarasinghe AE, Vomhof-Dekrey EE, Dorsam ST, Schuh JM. Gene expression profiling and network analysis of peripheral blood monocytes in a chronic model of allergic asthma. Microbiol Immunol 2010;54:558–563
  • Zou J, Young S, Zhu F, Gheyas F, Skeans S, Wan Y, Wang L, et al. Microarray profile of differentially expressed genes in a monkey model of allergic asthma. Genome Biol 2002;3:research0020.1–0020.13
  • Baines KJ, Simpson JL, Wood LG, Scott RJ, Gibson PG. Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples. J Allergy Clin Immunol 2011;127:153–160, 160–161
  • Guajardo JR, Schleifer KW, Daines MO, Ruddy RM, Aronow BJ, Wills-Karp M, Hershey GK. Altered gene expression profiles in nasal respiratory epithelium reflect stable versus acute childhood asthma. J Allergy Clin Immunol 2005;115:243–251
  • Wagener AH, Zwinderman AH, Luiten S, Fokkens WJ, Bel EH, Sterk PJ, van Drunen CM. The impact of allergic rhinitis and asthma on human nasal and bronchial epithelial gene expression. PLoS One 2013;8:e80257
  • Esnault S, Kelly EA, Schwantes EA, Liu LY, DeLain LP, Hauer JA, Bochkov YA, et al. Identification of genes expressed by human airway eosinophils after an in vivo allergen challenge. PLoS One 2013;8:e67560
  • Faiz A, Burgess JK. How can microarrays unlock asthma? J Allergy (Cairo) 2012;2012:241314
  • Liew CC, Ma J, Tang HC, Zheng R, Dempsey AA. The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med 2006;147:126–132
  • Radom-Aizik S, Zaldivar FJ, Leu SY, Cooper DM. Brief bout of exercise alters gene expression in peripheral blood mononuclear cells of early- and late-pubertal males. Pediatr Res 2009;65:447–452
  • Sood A, Qualls C, Schuyler M, Arynchyn A, Alvarado JH, Smith LJ, Jacobs DR. Adult-onset asthma becomes the dominant phenotype among women by age 40 years. The longitudinal CARDIA study. Ann Am Thorac Soc 2013;10:188–197
  • Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, von Mutius E, et al. A large-scale, consortium-based genome wide association study of asthma. N Engl J Med 2010;363:1211–1221
  • Lasky-Su J, Himes BE, Raby BA, Klanderman BJ, Sylvia JS, Lange C, Melen E, et al. HLA-DQ strikes again: genome-wide association study further confirms. Clin Exp Allergy 2012;42:1724–1733
  • Akhabir L, Sandford AJ. Genome-wide association studies for discovery of genes involved in asthma. Respirology 2011;16:396–406
  • Srivastava P, Helms PJ, Stewart D, Main M, Russell G. Association of CCR5{Delta}32 with reduced risk of childhood but not adult asthma. Thorax 2003;58:222–226
  • O'Donnell AR, Toelle BG, Marks GB, Hayden CM, Laing IA, Peat JK, Goldblatt J, Le Souëf PN. Age-specific relationship between CD14 and atopy in a cohort assessed from age 8 to 25 years. Am J Respir Crit Care Med 2004;169:615–622
  • Bouzigon E, Corda E, Aschard H, Dizier M, Boland A, Bousquet J, Chateigner N, et al. Effect of 17q21 variants and smoking exposure in early-onset asthma. N Engl J Med 2008;359:1985–1994
  • Bjornsdottir US, Holgate ST, Reddy PS, Hill AA, McKee CM, Csimma CI, Weaver AA, et al. Pathways activated during human asthma exacerbation as revealed by gene expression patterns in blood. PLoS One 2011;6:e21902
  • Subrata LS, Bizzintino J, Mamessier E, Bosco A, McKenna KL, Wikstrom ME, Goldblatt J, et al. Interactions between innate antiviral and atopic immunoinflammatory pathways precipitate and sustain asthma exacerbations in children. J Immunol 2009;183:2793–2800
  • Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One 2010;5:e13735
  • Shin S, Park JS, Kim YJ, Oh T, An S, Park CS. Differential gene expression profile in PBMCs from subjects with AERD and ATA: a gene marker for AERD. Mol Genet Genomics 2012;287:361–371
  • Shin SW, Oh TJ, Park SM, Park JS, Jang AS, Park SW, Uh ST, et al. Asthma-predictive genetic markers in gene expression profiling of peripheral blood mononuclear cells. Allergy Asthma Immunol Res 2011;3:265–272
  • Shin SW, Park J, Kim YJ, Uh ST, Choi BW, Kim MK, Choi IS, et al. A highly sensitive and specific genetic marker to diagnose aspirin-exacerbated respiratory disease using a genome-wide association study. DNA Cell Biol 2012;31:1604–1609
  • Baumann A, Devaux Y, Audibert G, Zhang L, Bracard S, Colnat-Coulbois S, Klein O, et al. Gene expression profile of blood cells for the prediction of delayed cerebral ischemia after intracranial aneurysm rupture: a pilot study in humans. Cerebrovasc Dis 2013;36:236–242
  • Van Eerdewegh P, Little RD, Dupuis J, Del MR, Falls K, Simon J, Torrey D, et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002;418:426–430
  • Su D, Zhang X, Sui H, Lu F, Jin L, Zhang J. Association of ADAM33 gene polymorphisms with adult allergic asthma and rhinitis in a Chinese Han population. BMC Med Genet 2008;9:82
  • Liang S, Wei X, Gong C, Wei J, Chen Z, Deng J. A disintegrin and metalloprotease 33 (ADAM33) gene polymorphisms and the risk of asthma: a meta-analysis. Hum Immunol 2013;74:648–657
  • Lee JY, Park SW, Chang HK, Kim HY, Rhim T, Lee JH, Jang AS, et al. A disintegrin and metalloproteinase 33 protein in patients with asthma: relevance to airflow limitation. Am J Respir Crit Care Med 2006;173:729–735
  • Foley SC, Mogas AK, Olivenstein R, Fiset PO, Chakir J, Bourbeau J, Ernst P, et al. Increased expression of ADAM33 and ADAM8 with disease progression in asthma. J Allergy Clin Immunol 2007;119:863–871
  • Jie Z, Jin M, Cai Y, Bai C, Shen Y, Yuan Z, Hu Y, Holgate S. The effects of Th2 cytokines on the expression of ADAM33 in allergen-induced chronic airway inflammation. Respir Physiol Neurobiol 2009;168:289–294
  • Ito I, Laporte JD, Fiset PO, Asai K, Yamauchi Y, Martin JG, Hamid Q. Downregulation of a disintegrin and metalloproteinase 33 by IFN-gamma in human airway smooth muscle cells. J Allergy Clin Immunol 2007;119:89–97
  • Wang P, Liu QJ, Li JS, Li HC, Wei CH, Guo CH, Gong YQ. Lack of association between ADAM33 gene and asthma in a Chinese population. Int J Immunogenet 2006;33:303–306
  • Tripathi P, Awasthi S, Husain N, Prasad R, Mishra V. Increased expression of ADAM33 protein in asthmatic patients as compared to non-asthmatic controls. Indian J Med Res 2013;137:507–514
  • Hanyu A, Ishidou Y, Ebisawa T, Shimanuki T, Imamura T, Miyazono K. The N domain of Smad7 is essential for specific inhibition of transforming growth factor-beta signaling. J Cell Biol 2001;155:1017–1027
  • Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 2000;6:1365–1375
  • Nakao A, Miike S, Hatano M, Okumura K, Tokuhisa T, Ra C, Iwamoto I. Blockade of transforming growth factor beta/Smad signaling in T cells by overexpression of Smad7 enhances antigen-induced airway inflammation and airway reactivity. J Exp Med 2000;192:151–158
  • Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 2007;293:L525–L534
  • Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T, Springer TA, et al. Latent TGF-beta structure and activation. Nature 2011;474:343–349
  • Luo X, Ding Q, Wang M, Li Z, Mao K, Sun B, Pan Y, et al. In vivo disruption of TGF-beta signaling by Smad7 in airway epithelium alleviates allergic asthma but aggravates lung carcinogenesis in mouse. PLoS One 2010;5:e10149
  • Hastie AT, Moore WC, Meyers DA, Vestal PL, Li H, Peters SP, Bleecker ER. Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes. J Allergy Clin Immunol 2010;125:1028–1036
  • Doherty TA, Soroosh P, Khorram N, Fukuyama S, Rosenthal P, Cho JY, Norris PS, et al. The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling. Nat Med 2011;17:596–603
  • Kotani H, Masuda K, Tamagawa-Mineoka R, Nomiyama T, Soga F, Nin M, Asai J, et al. Increased plasma LIGHT levels in patients with atopic dermatitis. Clin Exp Immunol 2012;168:318–324
  • Steinberg MW, Cheung TC, Ware CF. The signaling networks of the herpesvirus entry mediator (TNFRSF14) in immune regulation. Immunol Rev 2011;244:169–187
  • Lin F, Song A, Wu J, Jiang X, Long J, Chen J, Duan Y, et al. ADAM33 protein expression and the mechanics of airway smooth muscle cells are highly correlated in ovalbumin-sensitized rats. Mol Med Rep 2013;8:1209–1215
  • Zhu L, Chen S, Chen Y. Unraveling the biological functions of Smad7 with mouse models. Cell Biosci 2011;1:44
  • Yang Y, Wicks J, Haitchi HM, Powell RM, Manuyakorn W, Howarth PH, Holgate ST, Davies DE. Regulation of a disintegrin and metalloprotease-33 expression by transforming growth factor-β. Am J Respir Cell Mol Biol 2012;46:633–640
  • Zhang R, Li H, Zhao H, Chen W, Cheng D. Polymorphisms in a disintegrin and metalloprotease 33 gene and the risk of chronic obstructive pulmonary disease: a meta-analysis. Respirology 2014;19:312–320
  • Uh S, Jang A, Park S, Park J, Min C, Kim YH, Park B, et al. ADAM33 gene polymorphisms are associated with the risk of idiopathic pulmonary fibrosis. Lung 2014;192:525–532
  • Zandvoort A, Postma DS, Jonker MR, Noordhoek JA, Vos JT, Timens W. Smad gene expression in pulmonary fibroblasts: indications for defective ECM repair in COPD. Respir Res 2008;9:83

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.