7
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Cellular Calcium Metabolism: Activation and Antagonism

Pages 375-385 | Published online: 02 Jul 2009

References

  • Kretsinger A A. Calcium in biological systems. Coord Chem Rev 1976; 18: 29–124
  • Kretsinger A A. The informational role of calcium in the cytoplasm. Adv Cyclic Nucl Res 1979; 11: 1–26
  • Rasmussen H. Calcium and cAMP as Synarchic Messengers. Wiley-Interscience, New York 1981
  • Campbell A K. Intracellular Calcium. Its Universal Role as Regulator. John Wiley and Sons, Chichester and New York 1983
  • Rasmussen H. Pathways of amplitude and sensitivity modulation in the calcium messenger system. Calcium and Cell Function, W Y Cheung. Academic Press, London and New York 1983; Vol IV: 3–27
  • Hurwitz L, Suria A. The link between agonist action and response in smooth muscle. Ann Rev Pharmacol 1971; 11: 303–326
  • Bolton T B. The mechanism of action of transmitters and other substances in smooth muscle. Physiol Rev 1979; 59: 606–718
  • van Breemen C, Aaronson P, Loutzenhiser R. Na-Ca interactions in mammalian smooth muscle. Pharmacol Rev 1979; 30: 167–208
  • Cauvin C, Loutzenhiser R, van Breemen C. Mechanisms of calcium antagonist-induced vasodilation. Ann Rev Pharmacol Toxicol 1983; 23: 373–396
  • Chang K J, Triggle D J. Quantitative aspects of drug-receptor interactions I. Ca2+ and cholinergic receptor activation in smooth muscle: A basic model for drug-receptor interaction. J Theoret Biol 1973; 44: 125–154
  • Loutzenhiser R, van Breemen C. Involvement of extracellularly bound calcium in the activation of arterial smooth muscle. Blood Vessels 1983; 20: 295–305
  • Reuter H. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature (London) 1983; 301: 569–574
  • Tsien R W. Calcium channels in excitable cell membranes. Ann Rev Physiol 1983; 45: 341–358
  • Levitan J B, Lemos J R, Novak-Hofer I. Protein phosphorylation and the regulation of ion channels. Trends Neurosci 1983; 6: 496–499
  • Michell R H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 1975; 415: 81–147
  • Berridge M J. Phosphatidylinositol hydrolysis: A multifunctional transducing mechanism. Mol Cell Endocrinol 1981; 24: 115–140
  • Berridge M J. Rapid accumulation of inositol triphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J 1983; 212: 849–858
  • Putney J W. Recent hypotheses regarding the phosphatidylinositol effect. Life Sci 1981; 29: 1183–1194
  • Creba J A, Downes C P, Hawkins P T, Brewster G, Michell R H, Kirk C J. Rapid breakdown of phosphatidylinositol-4-phosphate and phosphatidylinositol 4,5-biphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+ mobilizing hormones. Biochem J 1983; 212: 733–747
  • Cockcroft S. Does phosphatidylinositol breakdown control the Ca2+-gating mechanism. Trends Pharmacol Sci 1981; 2: 340–342
  • Michell R H, Kirk C J. The unknown meaning of receptor-stimulated inositol lipid metabolism. Trends Pharmacol Sci 1982; 3: 140–141
  • Feinstein M B, Shaafi R I. Role of calcium in arachidonic acid metabolism and in the actions of arachidonic acid-derived metabolites. Calcium and Cell Function, W Y Cheung. Wiley-Interscience, New York 1983; Vol IV: 337–376
  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor promoting phorbol esters. J Biol Chem 1983; 257: 7847–7851
  • Wise B C, Raynor R L, Kuo J F. Phospholipid-sensitive Ca2+-dependent protein kinase from heart. I. Purification and general properties. J Biol Chem 1982; 257: 8481–8488
  • Nishizuka Y. Phospholipid degradation and signal translation for protein phosphorylation. Trends Biochem Sci 1983; 8: 13–16
  • McOsker C C, Weiland G A, Zilversmitt D R. Inhibition of hormone-stimulated adenylate cyclase activity after altering turkey erythrocyte phospholipid composition with a nonspecific lipid transfer protein. J Biol Chem 1983; 258: 13017–13026
  • Hirata F, Axelrod J. Phospholipid methylation and biological signal transmission. Science 1980; 209: 1082–1090
  • Ishizaka T, Hirata F, Sterk A R, Ishizaka K, Axelrod J A. Bridging IgE receptors activates phospholipid methylation and adenylate cyclase in mast cell plasma membranes. Proc Nat Acad Sci USA 1981; 78: 6812–6816
  • McGivney A, Crews F T, Hirata F, Axelrod J, Siraganian R P. Rat basophil leukemia cell lines defective in phospholipid methyltransferase enzymes, Ca2+ influx and histamine release: Reconstitution by hybridization. Proc Nat Acad Sci USA 1981; 78: 6176–6180
  • Koenig H, Goldstone A, Lu C Y. Polyamines regulate calcium fluxes in a rapid plasma membrane response. Nature (London) 1983; 305: 530–534
  • Koenig H, Goldstone A D, Lu C Y. β-Adrenergic stimulator of Ca2+ fluxes, endocytosis, hexose transport, and amino acid transport in mouse kidney cortex is mediated by polyamine synthesis. Proc Nat Acad Sci USA 1983; 80: 7210–7214
  • Fleckenstein A. Calcium Antagonism in Heart and Smooth Muscle. Wiley-Interscience, New York 1983
  • Fleckenstein A. Specific pharmacology of calcium in myocardium, cardiac pacemakers and vascular smooth muscle. Ann Rev Pharmacol Toxicol 1977; 17: 149–166
  • New Perspectives on Calcium Antagonists, G B Weiss. American Physiology Society, Bethesda, MD 1981
  • Calcium Blockers: Mechanisms of Action and Clinical Applications, S F Flaim, R Zelis. Urban and Schwarzenberg, Baltimore, MD 1982
  • Triggle D J, Swamy V C. Calcium antagonists: Some chemical-pharmacological aspects. Circ Res 1983; 52(Suppl I))17–28
  • Janis R A, Triggle D J. New developments in Ca2+ channel antagonists. J Med Chem 1983; 26: 775–785
  • Mannhold R, Rodenkirchen R, Bayer R. Qualitative and quantitative structure-activity relationships of specific Ca antagonists. Prog Pharmacol 1982; 5: 25–51
  • Meyer H, Kazda S, Bellemann P. Calcium antagonists: New opportunities. Ann Rep Med Chem 1983; 18: 79–88
  • Kass R S. Nisoldipine: A new, more selective calcium current blocker in cardiac Purkinje fibers. J Pharmacol Exp Therap 1982; 223: 446–456
  • Lee K S, Tsien R W. Mechanism of calcium channel blockade by verapamil, D 600, diltiazem and nitrendipine in single dialyzed heart cells. Nature (London) 1983; 302: 790–794
  • Bolger G T, Gengo P, Klockowski R, Luchowski E, Siegel H, Janis R A, Triggle A M, Triggle D J. Characterization of binding of the Ca2+-channel antagonist, [3H]nitrendipine, to guinea pig ileal smooth muscle. J Pharmacol Exp Therap 1983; 225: 291–310
  • Triggle D J, Janis R A. Calcium channel antagonists: New perspectives from the radioligand binding assay. Modern Methods in Pharmacology, N Back, S Spector. Alan R Liss, Inc, New York 1984; Vol 2
  • Janis R A, Sarmiento J G, Maurer S C, Bolger G T, Triggle D J. Characteristics of the binding of [3H]nitrendipine to rabbit ventricular membranes: Modification by other Ca2+ channel antagonists and by the Ca2+ channel agonist, BAY K 8644, unpublished
  • Yousif F, Bolger G T, Triggle D J, Janis R A. Ca2+ channel antagonist actions in smooth muscle: Pharmacologic and [3H]nitrendipine binding studies, unpublished
  • Glossmann H, Ferry D R, Lübbecke F, Mewes R, Hofmann F. Calcium channels: Direct identification with radioligand binding studies. Trends Pharmacol Sci 1982; 3: 431–437
  • Murphy K MM, Gould R J, Largent B L, Snyder S H. A unitary mechanism of calcium antagonist drug action. Proc Nat Acad Sci USA 1983; 80: 860–864
  • Ferry D R, Goll A, Glossmann H. Putative calcium channel molecular weight determinations by target size analysis. Naunyn Schmied Arch Pharmacol 1983; 323: 292–297
  • Venter J C, Fraser C M, Schaber J S, Jung C Y, Bolger G, Triggle D J. Molecular properties of the slow inward calcium channel. J Biol Chem 1983; 258: 9344–9348
  • Schramm M, Thomas G, Towart R, Franckowiak G. Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature (London) 1983; 303: 535–537
  • Schramm M, Thomas G, Towart R, Franckowiak G. Activation of calcium channels by novel 1,4-dihydropyridines. Arzneim Forsch 1983; 33: 1268–1272
  • Su C M, Swamy V C, Triggle D J. Calcium channel activation in vascular smooth muscle by BAY K 8644. Can. J. Physiol. Pharmacol, in press
  • Glossmann H, Linn T, Rombusch M, Ferry D R. Temperature-dependent regulation of d-cis-[3H]diltiazem binding to Ca2+ channels by 1,4-dihydropyridine channel agonists and antagonists. FEBS Lett 1983; 160: 226–232
  • Gould R J, Murphy K MM, Snyder S H. [3H]Nitrendipine-labeled calcium channels discriminate inorganic calcium agonists and antagonists. Proc Nat Acad Sci USA 1982; 79: 3651–3660
  • Luchowski E, Yousif F, Triggle D J, Maurer S C, Sarmiento J G, Janis R A. The effects of metal cations and calmodulin antagonists on [3H]nitrendipine binding in smooth and cardiac muscle, unpublished
  • Reynolds J J, Gould R J, Snyder S H. [3H]Verapamil binding sites in brain and skeletal muscle: Regulation by calcium. Eur J Pharmacol 1983; 95: 319–321
  • Weiss B, Prozialeck W C, Wallace T I. Interaction of drugs with calmodulin. Biochemical, pharmacological and clinical implications. Biochem Pharmacol 1982; 31: 2217–2226
  • Roufogalis B. Specificity of trifluoperazine and related phenothiazines for Ca2+ binding proteins. Calcium Cell Fund 1983; 3: 129–154
  • Mazurek N, Bashkin P, Pecht I. Isolation of a basophilic membrane protein binding the antiallergic drug cromolyn. EMBO J 1982; 1: 585–590
  • Mazurek N, Bashkin P, Petrank A, Pecht I. Basophil variants with impaired cromoglycate binding do not respond to an immunological degranulation stimulus. Nature (London) 1983; 303: 528–530
  • Mazurek N, Bashkin P, Loyter A, Pecht I. Restoration of Ca2+ influx and degranulation capacity of variant RBL-2H3 cells upon implantation of isolated cromolyn binding protein. Proc Nat Acad Sci USA 1983; 80: 6014–6018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.