18
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Regulation of Lung Inflammation by Local Glucocorticoid Metabolism: An Hypothesis

&
Pages 303-317 | Published online: 02 Jul 2009

References

  • Funder J W, Pierce F T, Smith R, Smith A I. Mineralocortiooid action: target tissue specificity is enzyme, not receptor, mediated. Science 1988; 242: 583–585
  • Edwards C RW, Burt D, McIntyre M A, Kloet E R, Stewart P M, Brett L, Sutanto W S, Monder C. Localisation of 11β-hydroxysteroid dehydrogenase-tissue specific protector of the mineralocorticoid receptor. Lancet 1988; 1: 986–989
  • Monder C, Stewart P M, Lakshmi V, Valentino R, Burt D, Edwards C RW. Licorice inhibits corticosteroid 11β-dehydrogenase of rat kidney and liver: In vivo and In vitro studies. Endocrinology 1989; 125: 1046–1053
  • Schleimer R P. Metabolism of hydrocortisone in human lung by 11β-hydroxysteroid dehydrogenase (HSD). Tissue distribution and blockade of the enzyme by glycyrrhetinic acid and carbenoxolone. FASEB J 1990; 4: A453
  • Peterson R E, Pierce C E, Wyngaarden J M, Bunim J J, Brodie B B. The physiological disposition and metabolic fate of cortisone in man. J Clin Invest 1957; 36: 1301–1312
  • Berliner D L, Dougherty T F. Metabolism of cortisol by loose connective tissue in vitro. PSEBM 1958; 98: 3–6
  • Mahesh V B, Ulrich F. Metabolism of cortisol and cortisone by various tissues and subcellular particles. J Biol Chem 1960; 235: 356–360
  • Kowarski A, Lawrence B, Hung W, Migeon C J. Interconversion of cortisol and cortisone in man and its effect on the measurement of cortisol secretion rate. J Clin Endocr 1969; 29: 377–381
  • Bush I E. Chemical and biological factors in the activity of adrenocortical steroids. Pharm Rev 1962; 14: 317–445
  • Berliner D L, Dougherty T F. Influence of reticuloendothelial and other cells on the metabolic fate of steroids. Ann NY Acad Sci 1960; 88: 14–29
  • Meigs R A, Engel L L. The metabolism of adrenocortical steroids by human tissues. Endocrinology 1961; 69: 152–162
  • Bush I E, Hunter S A, Meigs R A. Metabolism of 11-oxygenated steroids. Biochem J 1968; 107: 239–258
  • Sweat M L, Bryson M J. The role of phosphopyridine-nucleotides in the metabolism of cortisol by peripheral tissue. Biochim Biophys Acta 1960; 44: 211–223
  • Pearson Murphy B E. Ontogeny of cortisol-cortisone interconversion in human tissues: A role for cortisone in human fetal development. J Ster Biochem 1981; 14: 811–817
  • Monder C. Characterization and biological significance of corticosteroid 11β-dehydrogenase, the oxidizing component of 11β-hydroxysteroid dehydrogenase. Ann NY Acad Sci 1990; 595: 26–39
  • Monder C, Shackleton C HL. 11β-hydroxysteroid dehydrogenase: Fact or fancy?. Steroids 1984; 44: 383–417
  • Abramovitz M, Branchaud C L, Murphy B EP. Cortisol-cortisone interconversion in human fetal lung: contrasting results using explant and monolayer cultures suggest 11β-hydroxysteroid dehydrogenase (EC 1.1.1.146) comprises two enzymes. J Clin Endocrinol Metab 1982; 54: 563–568
  • Smith B T. The role of pulmonary corticosteroid 11-reductase activity in lung maturation in the fetal rat. Pediatr Res 1978; 12: 12–14
  • Schleimer R P. Potential regulation of inflammation in the lung by local metabolism of hydrocortisone. Am J Respir Cell Mol Biol 1991; 4: 166–173
  • Pearson Murphy B E. Specificity of human 11β-hydroxysteroid dehydrogenase. J Ster Biochem 1981; 14: 807–809
  • Ulick S, Levin L S, Gunczler P, Zanconato G, Ramirez L C, Rauh W, Rosier A, Bradlow H L, New M I. A syndrome of apparent mineralocorticoid excess associated with defects in the peripheral metabolism of cortisol. J Clin Endocrinol Metab 1979; 49: 757–764
  • Abramovitz M, Carriero R, Pearson Murphy B E. Investigation of factors influencing 11β-hydroxysteroid dehydrogenase (EC 1.1.1.146) activity in midgestational human fetal lung monolayer and explant cultures. J Ster Biochem 1984; 21: 677–683
  • Lakshmi V, Monder C. Purification and characterization of the corticosteroid 11β-dehydrogenase component of the rat liver 11β-hydroxysteroid dehydrogenase complex. Endocrinology 1988; 123: 2390–2398
  • Lakshmi V, Monder C. Evidence for independent 11-oxidase and 11-reductase activities of 11β-hydroxysteroid dehydrogenase: Enzyme latency, phase transitions, and lipid requirements. Endocrinology 1985; 116: 552–560
  • Agarwal A K, Monder C, Eckstein B, White P C. Cloning and expression of rat cDNA encoding corticosteroid 11β-dehydrogenase. J Biol Chem 1989; 264: 18939–18943
  • Adamson A C, Tillman W G. Hydrocortisone. Br Med J 1955; 17: 1501
  • Colin-Jones E. Glycyrrhetinic acid. Br Med J 1957; 19: 161
  • Sommerville J. Glycyrrhetinic acid. Br Med J 1957; 2: 282–283
  • Gillies Annan W. Hydrocortisone and glycyrrhetinic acid. Br Med J 1957; 25: 1242
  • Doll R, Hill I D, Hutton C, Underwood I DJ. Clinical trial of a triterpenoid liquorice compound in gastric and duodenal ulcer. Lancet 1962; 2: 793–796
  • Persson C GA. Glucocorticoids for asthma-early contributions. Pulmon Pharmacol 1989; 2: 163–166
  • Sircus W. Carbenoxolone sodium. Gut, 13: 816–824, 172
  • Shibata S, Takahashi K, Yano S, Harada M, Saito H, Tamura Y, Kumagai A, Hirabayashi K, Yamamoto M, Nagata N. Chemical modification of glycyrrhetinic acid in relation to the biological activities. Chem Pharm Bull 1987; 35: 1910–1918
  • Abe H, Ohya N, Fujikawa Yamamoto K, Shibuya T, Arichi S, Odashima S. Effects of glycyrrhizin and glycyrrhetinic acid on growth and melanogenesis in cultured B16 melanoma cells. Eur J Cancer Clin Oncol 1987; 23: 1549–1555
  • Davidson J S, Baumgarten I M, Harley E H. Reversible inhibition of intercellular junctional communication by glycyrrhetinic acid. Biochem Biophys Res Commun 1986; 134: 29–36
  • Tamaya T, Sato S, Okada H H. Possible mechanism of steroid action of the plant herb extracts glycyrrhizin, glycyrrhetinic acid, and paeoniflorin: Inhibition by plant herb extracts of steroid protein binding in the rabbit. Am J Obstet Gynecol 1986; 155: 1134–1139
  • Valentino R, Stewart P M, Burt D, Edwards C RW. Liquorice inhibits 11 beta hydroxysteroid dehydrogenase in the rat. J Endocrinol 1987; 112: 260
  • Stewart P M, Valentino R, Wallace A M, Burt D, Shackleton C HL, Edwards C RW. Mineralocorticoid activity in liquorice: 11-beta-hydroxysteroid dehydrogenase deficiency comes of age. Lancet 1987; 1: 821–824
  • Mackenzie M A, Hoefnagels W HL, Jansen R WMM, Benraad T J, Kloppenborg W C. The influence of glycyrrhetinic acid on plasma cortisol and cortisone in healthy young volunteers. J Clin Endocrinol Metab 1990; 70: 1637–1643
  • Osinski P A. Steroid 11β-ol dehydrogenase in human placenta. Nature 1960; 27: 777
  • Giroud C JP. Aspects of corticosteroid biogenesis and metabolism during the perinatal period. Clin Obstet Gynecol 1971; 14: 745–762
  • Pearson Murphy B E, Clark S J, Donald I R, Pinsky M, Vedady D. Conversion of maternal cortisol to cortisone during placental transfer to the human fetus. Am J Obstet Gynecol 1973; 118: 538–541
  • Beitins I Z, Bayard F, Ances I G, Kowardski A, Migeon C J. The transplacental passage of prednisone and prednisolone in pregnancy near term. J Pediatr 1972; 81: 936–945
  • Pearson Murphy B E, Diez d'Aux R C. Steroid levels in the human fetus: cortisol and cortisone. J Clin Endocrinol Metab 1972; 35: 678–683
  • Pearson Murphy B E. Does the human fetal adrenal play a role in parturition?. Am J Obstet Gynecol 1972; 115: 521–525
  • Challis J RG, Thorburn G D. Prenatal endocrine function and the initiation of parturition. Br Med Bull 1975; 31: 57–61
  • Pearson Murphy B E. Chorionic membrane as an extra-adrenal source of feotal cortisol in human amniotic fluid. Nature 1977; 266: 179–181
  • Axelrod L. Side effects of glucocorticoid therapy. Antiinflammatory Steroid Action. Basic and Clinical Aspects, R P Schleimer, H N Claman, A R Oronsky. Academic Press, San Diego 1989; 377–408
  • Pearson Murphy B E. Conversion of cortisol to cortisone by the human uterus and its reversal in pregnancy. J Clin Endocrinol Metab 1977; 44: 1214–1217
  • Bernal A L, Flint A PF, Anderson A BM, Turnbull A C. 11β-hydroxysteroid dehydrogenase activity (E.C. 1.1.1.146) in human placenta and decidua. J Ster Biochem 1980; 13: 1081–1087
  • Ganis F M, Axelrod L R, Miller L L. The metabolism of hydrocortisone by kidney tissue in vitro. J Biol Chem 1955; 218: 841–848
  • Hellman L, Nakada F, Zumoff B, Fukushima D, Bradlow H L, Gallagher T F. Renal capture and oxidation of cortisol in man. J Clin Endocr 1971; 33: 52–62
  • Ulick S, Levine L S, Gunczler P, Zanconato G, Ramirez L C, Rauh W, Rosier A, Bradlow H L, New M I. A syndrome of apparent mineralocorticoid excess associated with defects in the peripheral metabolism of cortisol. J Clin Endocrinol Metabol 1979; 49: 757–764
  • Oberfield S E, Levine L S, Carey R M, Greig F, Ulick S, New M I. Metabolic and blood pressure responses to hydrocortisone in the syndrome of apparent mineralocorticoid excess. J Clin Endocrinol Metab 1983; 56: 332–339
  • Phillipou C, Higgins B A. A new defect in the peripheral conversion of cortisone to cortisol. J Ster Biochem 1985; 22: 435–436
  • Monder C, Shackleton C H, Bradlow H L, New M I, Stoner E, Iohan F, Lakshmi V. The syndrome of apparent mineralocorticoid excess: Its association with 11β-dehydrogenase and 5β-reductase deficiency and some consequences for corticosteroid metabolism. J Clin Endocrinol Metab 1986; 63: 550–557
  • Stewart P M, Corrie J ET, Shackleton C HL, Edwards C RW. Syndrome of apparent mineralocorticoid excess. J Clin Invest 1988; 82: 340–349
  • Krozowski Z S, Funder J W. Renal mineralocorticoid receptors and hippocampal corticosterone-binding species have identical intrinsic steroid specificity. Proc Natl Acad Sci (USA) 1983; 80: 6056–6060
  • Arriza J L, Weinberger C, Cerelli G, Glaser T M, Handelin B L, Housman D E, Evans R M. Cloning of human mineralocorticoid receptor complementary DNA: Structure and functional kinship with the glucocorticoid receptor. Science 1987; 237: 268–275
  • Molhuysen J A, Gerbrandy J, De Vries L A, De Jong J C, Lenstra J B, Turner K P, Borst J GG. A liquorice extract with deoxycortisone-like action. Lancet 1950; 2: 381–386
  • Borst J GG, De Vries L A, Ten Holt S P, Molhuysen J A. Synergistic action of liquorice and cortisone in Addison's and Simmonds's disease. Lancet 1953; 1: 657–663
  • Card W I, Mitchell W, Strong J A, Taylor N RW, Tompsett S L, Wilson J MG. Effects of liquorice and its derivatives on salt and water metabolism. Lancet 1953; 663–668
  • Malkinson F D, Lee M W, Cutukovic Con I. In vitro studies of adrenal steroid metabolism in the skin. J Inv Derm 1959; 32: 101–107
  • Hsia S L, Hao Y-L. Metabolic transformations of cortisol-4-[14C] in human skin. Biochemistry 1966; 5: 1469–1474
  • Teelucksingh S, Mackie A DR, Burt D, McIntyre M A, Brett L, Edwards C RW. Potentiation of hydrocortisone activity in skin by glycyrrhetinic acid. Lancet 1990; 2: 1060–1063
  • Imanishi N, Ohmori E, Yatsunami K, Ichikawa A. Effect of hydrocortisone on histidine decarboxylase activity in rat stomach. Chem Pharm Bull 1988; 36: 4088–4094
  • Gluck L, Kulovich M V, Borer R CJ, Brenner P H, Anderson G G, Spellacy W N. Diagnosis of the respiratory distress syndrome by amniocenteses. Am J Obstet Gynecol 1971; 109: 440–445
  • Whitfield C R, Chan W H, Sproule W B, Stewart A D. Amniotic fluid lecithin: Sphingomyelin ratio and fetal lung development. Br Med J 1972; 8: 85–86
  • Pearson Murphy B E. Cortisol and cortisone levels in the cord blood at delivery of infants with and without the respiratory distress syndrome. Am J Obstet Gynecol 1974; 119: 1112–1120
  • Pearson Murphy B E. Evidence of cortisol deficiency at birth in infants with the respiratory distress syndrome. J Clin Endocrinol Metab 1974; 38: 158
  • Sybulski S, Maughan G B. Relationship between cortisol levels in umbilical cord plasma and development of the respiratory distress syndrome in premature newborn infants. Am J Obstet Gynecol 1975; 725: 239–243
  • Sharp-Cageorge S M, Blicher B M, Gordon E R, Pearson Murphy B E. Amniotic-fluid cortisol and human fetal lung maturation. N Engl J Med 1977; 296: 89–92
  • Smith B T, Worthington D, Piercy W N. The relationship of cortisol and cortisone to saturated lecithin concentration in ovine amniotic fluid and fetal lung liquid. Endocrinology 1977; 101: 104–109
  • Spellacy W N, Buhi W C, Riggall F C, Holsinger K L. Human amniotic fluid lecithin/sphingomyelin ratio changes with estrogen or glucocorticoid treatment. Am J Obstet Gynecol 1972; 115: 216–218
  • Liggins G C, Howie R N. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 1972; 50: 515–525
  • Farrell P M, Zachman R D. Induction of choline phosphotransferase and lecithin synthesis in the fetal lung by corticosteroids. Science 1973; 119: 297–298
  • Smith B T, Torday J S, Giroud C JP. The growth promoting effect of cortisol on human fetal lung cells. Steroids 1973; 22: 515–524
  • Torday J S, Smith B T, Giroud C JP. The rabbit fetal lung as a glucocorticoid target tissue. Endocrinology 1975; 96: 1462–1467
  • Giannopoulos G, Mulay S, Solomon S. Cortisol receptors in rabbit fetal lung. Biochem Biophys Res Commun 1972; 47: 411–418
  • Ballard P L, Ballard R A. Glucocorticoid receptors and the role of glucocorticoids in fetal lung development. Proc Natl Acad Sci (USA) 1972; 69: 2668–2672
  • Giannapoulos G. Variations of the levels of cytoplasmic glucocorticoid receptors in lungs of various species at different developmental stages. Endocrinology 1974; 94: 450–458
  • Ballard P L, Ballard R A. Cytoplasmic receptor for glucocorticoids in lung of the human fetus and neonate. J Clin Invest 1974; 53: 477–486
  • Pearson Murphy B E. Cortisol and cortisone in human fetal development. J Steroid Biochem 1979; 11: 509–513
  • Cullen J J, Welsh M J. Regulation of sodium absorption by canine tracheal epithelium. J Clin Invest 1987; 79: 73–79
  • Vichyanond P, Irvin C G, Larsen G L, Szefler S J, Hill M R. Penetration of corticosteroids into the lung: Evidence for a difference between methylpred-nisolone and prednisolone. J Allergy Clin Immunol 1989; 84: 867–873
  • Csonka G W, Murray M. Clinical evaluation of carbenoxolone in balanitis. Br J Vener Dis 1971; 47: 179–181
  • Davies W A, Reed P I. Controlled trial of duogastrone in duodenal ulcer. Gut 1977; 18: 78–83
  • Yaginuma T, Izumi R, Yasui H, Arai T, Kawabata M. Effect of traditional herbal medicine on serum testosterone levels and its induction of regular ovulation in hyperandrogenic and oligomenorrheic women. Acta Obstet Gynaecol Jpn 1982; 34: 939–944
  • Boström H, Bernsten K, Whitehouse M W. Biochemical properties of anti-inflammatory drugs-II. Biochem Pharmacol 1964; 13: 413–420
  • Finney R SH, Tárnoky A L. The pharmacological properties of glycyrrhetinic acid hydrogen succinate. J Pharm Pharmacol 1960; 12: 49–58
  • Finney R SH, Tárnoky A L. The pharmacological properties of glycyrrhetinic acid hydrogen succinate (disodium salt). J Pharm Pharmacol 1959; 12: 49–58
  • Finney R SH, Somers G F. The anti-inflammatory activity of glycyrrhetinic acid and derivatives. J Pharm Pharmacol 1958; 10: 613–620
  • Capasso F, Mascolo N, Autore G, Duraccio M R. Glycyrrhetinic acid, leucocytes and prostaglandins. J Pharm Pharmacol 1983; 35: 332–335
  • Kumagai A, Yano S, Takeuchi K, Nishino K, Asanuma Y, Nanaboshi M, Yamamura Y. An inhibitory effect of glycyrrhinizin on the anti-granulomatous action of cortisone. Endocrinology 1964; 74: 145–148
  • Tangri K K, Seth P K, Parmar S S, Bhargava K P. Biochemical study of anti-inflammatory and antiarthritic properties of glycyrrhetic acid. Biochem Pharmacol 1965; 14: 1277–1281
  • Inoue H, Mori T, Shibata S, Koshihara Y. Modulation by glycyrrhetinic acid derivatives of TPA-induced mouse ear edema. Br J Pharmacol 1989; 96: 204–210
  • Inoue H, Mori T, Shibata S, Koshihara Y. Inhibitory effect of glycyrrhetinic acid derivatives on arachidonic acid-induced mouse ear edema. J Pharm Pharmacol 1988; 40: 272–277
  • Inoue H, Mori T, Shibata S, Saito H. Pharmacological activities of glycyrrhetinic acid derivatives: Analgesic and anti-type IV allergic effects. Chem Pharm Bull 1987; 35: 3888–3893
  • Inoue H, Kurosu S, Takeuchi T, Mori T, Shibata S. Glycyrrhetinic acid derivatives: anti-nociceptive activity of deoxoglycyrrhetol dihemiphthalate and the related compounds. J Pharm Pharmacol 1990; 42: 199–200
  • Nishino H, Nishino A, Takayasu J, Hasegawa T, Iwashima A, Hirabayashi K, Iwata S, Shibata S. Inhibition of the tumor-promoting action of 12–0-tetradecanoylphorbol-13-acetate by some oleanane-type triterpenoid compounds. Cancer Res 1988; 48: 5210–5215
  • Yano S, Harada M, Watanabe K, Nakamaru K, Hatakeyama Y, Shibata S, Takahashi K, Mori T, Hirabayashi K, Takeda M, Nagata N. Antiulcer activities of glycyrrhetinic acid derivatives in experimental gastric lesion models. Chem Pharm Bull 1989; 37: 2500–2504
  • Atherden L M. Studies with glycyrrhetic acid: Inhibition of metabolism of steroids in vitro. Biochem J 1958; 69: 75–78
  • Ohtsuki K, Ishida N. Inhibitory effect of glycyrrhizin on polypeptide phosphorylation by polypeptide-dependent protein kinase (kinase P) in vitro. Biochem Biophys Res Commun 1988; 57: 597–604
  • Baba M, Shigeta S. Antiviral activity of glycyrrhizin against varicella-zoster virus in vitro. Antiviral Res 1987; 7: 99–107
  • Ito M, Nakashima H, Baba M, Pauwels R, De Clercq E, Shigeta S, Yamamoto N. Inhibitory effect of glycyrrhizin on the in vitro infectivity and cytopathic activity of the human immunodeficiency virus [HIV HTLV-III/LAV)]. Antiviral Res 1987; 7: 127–137
  • Pompei R, Flore O, Marccialis M A, Pani A, Loddo B. Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature 1979; 287: 689–690
  • Shinada M, Azuma M, Kawai H, Sazaki K, Yoshida I, Yoshida T, Suzutani T, Sakuma T. Enhancement of interferon-7 production in glycyrrhizin-treated human peripheral lymphocytes in response to con-canavalin A and to surface antigen to hepatitis B virus (42241). Soc Exp Biol Med 1986; 181: 205–210
  • Ohuchi K, Kamada Y, Levine L, Tsurufuji S. Glycyrrhizin inhibits prostaglandin E2 production by activated peritoneal macrophages from rats. Prostaglandins Med 1986; 7: 457–463
  • Imanishi N, Kawai H, Hayashi Y, Yatsunami K, Ichikawa A. Effects of glycyrrhizin and glycyrrhetinic acid on dexamethasone-induced changes in histamine synthesis of mouse mastocytoma P-815 cells and in histamine release from rat peritoneal mast cells. Biochem Pharmac 1989; 38: 2521–2526
  • Inoue H, Saito H, Koshihara Y, Murota S. Inhibitory effect of glycyrrhetinic acid derivatives on lipoxygenase and prostaglandin synthetase. Chem Pharm Bull 1986; 34: 897–901

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.