3,455
Views
38
CrossRef citations to date
0
Altmetric
Research Article

The music of lipids: How lipid composition orchestrates cellular behaviour

, , &
Pages 301-310 | Received 25 Oct 2011, Accepted 19 Nov 2011, Published online: 30 Jan 2012

References

  • Medes G, Thomas A, Weinhouse S. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res 1953;13:27–9.
  • Ookhtens M, Kannan R, Lyon I, Baker N. Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am J Physiol Regul Integr Comp Physiol 1984;247:R146–53.
  • Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD, . Fatty acid synthesis: A potential selective target for antineoplastic therapy. Proc Natl Acad Sci 1994;91:6379–83.
  • Swinnen JV, Vanderhoydonc F, Elgamal AA, Eelen M, Vercaeren I, Joniau S, . Selective activation of the fatty acid synthesis pathway in human prostate cancer. Int J Cancer 2000;88:176–9.
  • Swinnen JV, Heemers H, Deboel L, Foufelle F, Heyns W, Verhoeven G, . Stimulation of tumor-associated fatty acid synthase expression by growth factor activation of the sterol regulatory element-binding protein pathway. Oncogene 2000;19:5173–81.
  • Flavin R, Peluso S, Nguyen PL, Loda M. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol 2010;6:551–62.
  • Pizer ES, Thupari J, Han WF, Pinn ML, Chrest FJ, Frehywot GL, . Malonyl-Coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Cancer Res 2000;60:213–8.
  • Brusselmans K, De Schrijver E, Verhoeven G, Swinnen JV. RNA interference-mediated silencing of the acetyl-CoA-carboxylase-α gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res 2005;65:6719–25.
  • Zhan Y, Ginanni N, Tota MR, Wu M, Bays NW, Richon VM, . Control of cell growth and survival by enzymes of the fatty acid synthesis pathway in HCT-116 colon cancer cells. Clin Cancer Res 2008;14:5735–42.
  • Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB. ATP citrate lyase is an important component of cell growth and transformation. Oncogene 2005;24:6314–22.
  • Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, . ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005;8:311–21.
  • Thupari JN, Pinn ML, Kuhajda FP. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity. Biochem Biophys Res Commun 2001;285:217–23.
  • Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, Brusselmans K, . Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res 2007;67:8180–7.
  • Chajes V, Cambot M, Moreau K, Lenoir GM, Joulin V. Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res 2006;66:5287–94.
  • Knowles LM, Yang C, Osterman A, Smith JW. Inhibition of fatty-acid synthase induces caspase-8-mediated tumor cell apoptosis by up-regulating DDIT4. J Biol Chem 2008;283:31378–84.
  • Zhou W, Simpson PJ, McFadden JM, Townsend CA, Medghalchi SM, Vadlamudi A, . Fatty acid synthase inhibition triggers apoptosis during S phase in human cancer cells. Cancer Res 2003;63:7330–7.
  • Wang HQ, Altomare DA, Skele KL, Poulikakos PI, Kuhajda FP, Di Cristofano A, . Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells. Oncogene 2005;24:3574–82.
  • Murata S, Yanagisawa K, Fukunaga K, Oda T, Kobayashi A, Sasaki R, . Fatty acid synthase inhibitor cerulenin suppresses liver metastasis of colon cancer in mice. Cancer Sci 2010;101:1861–5.
  • Ho TS, Ho YP, Wong WY, Chi-Ming Chiu L, Wong YS, Eng-Choon Ooi V. Fatty acid synthase inhibitors cerulenin and C75 retard growth and induce caspase-dependent apoptosis in human melanoma A-375 cells. Biomed Pharmacother 2007;61:578–87.
  • Zecchin KG, Rossato FA, Raposo HF, Melo DR, Alberici LC, Oliveira HC, . Inhibition of fatty acid synthase in melanoma cells activates the intrinsic pathway of apoptosis. Lab Invest 2011;91:232–40.
  • Bandyopadhyay S, Zhan R, Wang Y, Pai SK, Hirota S, Hosobe S, . Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Res 2006;66:5934–40.
  • Little JL, Wheeler FB, Fels DR, Koumenis C, Kridel SJ. Inhibition of fatty acid synthase induces endoplasmic reticulum stress in tumor cells. Cancer Res 2007;67:1262–9.
  • Dowling S, Cox J, Cenedella RJ. Inhibition of fatty acid synthase by Orlistat accelerates gastric tumor cell apoptosis in culture and increases survival rates in gastric tumor bearing mice in vivo. Lipids 2009;44:489–98.
  • Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, . De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res 2010;70:8117–26.
  • Swinnen JV, Brusselmans K, Verhoeven G. Increased lipogenesis in cancer cells: New players, novel targets. Curr Opin Clin Nutr Metab Care 2006;9:358–65.
  • Staubach S, Hanisch FG. Lipid rafts: Signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteomic 2011;8:263–77.
  • Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 2007;7:763–77.
  • Baron A, Migita T, Tang D, Loda M. Fatty acid synthase: A metabolic oncogene in prostate cancer? J Cell Biochem 2004;91:47–53.
  • Zeng L, Wu GZ, Goh KJ, Lee YM, Ng CC, You AB, . Saturated fatty acids modulate cell response to DNA damage: Implication for their role in tumorigenesis. PLoS One 2008;3:e2329.
  • Migita T, Ruiz S, Fornari A, Fiorentino M, Priolo C, Zadra G, . Fatty acid synthase: A metabolic enzyme and candidate oncogene in prostate cancer. J Natl Cancer Inst 2009;101:519–32.
  • Vazquez-Martin A, Ropero S, Brunet J, Colomer R, Menendez JA. Inhibition of Fatty Acid Synthase (FASN) synergistically enhances the efficacy of 5-fluorouracil in breast carcinoma cells. Oncol Rep 2007;18:973–80.
  • Menendez JA, Vellon L, Mehmi I, Oza BP, Ropero S, Colomer R, . Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proc Natl Acad Sci U S A 2004;101:10715–20.
  • Menendez JA, Vellon L, Lupu R. Targeting fatty acid synthase-driven lipid rafts: A novel strategy to overcome trastuzumab resistance in breast cancer cells. Med Hypotheses 2005;64:997–1001.
  • Green DE, Fleischer S. The role of lipids in mitochondrial electron transfer and oxidative phosphorylation. Biochim Biophys Acta 1963;70:554–82.
  • Fleischer S, Rouser G, Fleischer B, Casu A, Kritchevsky G. Lipid composition of mitochondria from bovine heart, liver, and kidney. J Lipid Res 1967;8:170–80.
  • van den Brink-van der Laan E, Killian JA, de Kruijff B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta 2004;1666:275–88.
  • Cullis PR, de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 1979;559:399–420.
  • Mileykovskaya E, Zhang M, Dowhan W. Cardiolipin in energy transducing membranes. Biochemistry (Mosc) 2005;70:154–8.
  • Koshkin V, Greenberg ML. Cardiolipin prevents rate-dependent uncoupling and provides osmotic stability in yeast mitochondria. Biochem J 2002;364:317–22.
  • Bianchi C, Genova ML, Parenti Castelli G, Lenaz G. The mitochondrial respiratory chain is partially organized in a supercomplex assembly: Kinetic evidence using flux control analysis. J Biol Chem 2004;279:36562–9.
  • Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, . Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 2003;278:52873–80.
  • McKenzie M, Lazarou M, Thorburn DR, Ryan MT. Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol 2006;361:462–9.
  • Gohil VM, Hayes P, Matsuyama S, Schagger H, Schlame M, Greenberg ML. Cardiolipin biosynthesis and mitochondrial respiratory chain function are interdependent. J Biol Chem 2004;279:42612–8.
  • Claypool SM, Oktay Y, Boontheung P, Loo JA, Koehler CM. Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane. J Cell Biol 2008;182:937–50.
  • Jiang F, Ryan MT, Schlame M, Zhao M, Gu Z, Klingenberg M, . Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem 2000;275:22387–94.
  • Osman C, Haag M, Potting C, Rodenfels J, Dip PV, Wieland FT, . The genetic interactome of prohibitins: Coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria. J Cell Biol 2009;184:583–96.
  • Xu Y, Condell M, Plesken H, Edelman-Novemsky I, Ma J, Ren M, . A Drosophila model of Barth syndrome. Proc Natl Acad Sci U S A 2006;103:11584–8.
  • Ohtsuka T, Nishijima M, Suzuki K, Akamatsu Y. Mitochondrial dysfunction of a cultured Chinese hamster ovary cell mutant deficient in cardiolipin. J Biol Chem 1993;268:22914–9.
  • Olichon A, Emorine LJ, Descoins E, Pelloquin L, Brichese L, Gas N, . The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett 2002;523:171–6.
  • Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, . ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function. J Biol Chem 2011;286:2918–32.
  • Rabl R, Soubannier V, Scholz R, Vogel F, Mendl N, Vasiljev-Neumeyer A, . Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g. J Cell Biol 2009;185:1047–63.
  • Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, . OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 2006;126:177–89.
  • Hackenbrock CR. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol 1966;30:269–97.
  • Liu J, Dai Q, Chen J, Durrant D, Freeman A, Liu T, . Phospholipid scramblase 3 controls mitochondrial structure, function, and apoptotic response. Mol Cancer Res 2003;1:892–902.
  • Choi SY, Huang P, Jenkins GM, Chan DC, Schiller J, Frohman MA. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 2006;8:1255–62.
  • Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 2010;11:872–84.
  • Gohil VM, Greenberg ML. Mitochondrial membrane biogenesis: Phospholipids and proteins go hand in hand. J Cell Biol 2009;184:469–72.
  • Osman C, Voelker DR, Langer T. Making heads or tails of phospholipids in mitochondria. J Cell Biol 2011;192:7–16.
  • Chicco AJ, Sparagna GC. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 2007;292:C33–44.
  • Cortese JD, Voglino AL, Hackenbrock CR. Multiple conformations of physiological membrane-bound cytochrome c. Biochemistry 1998;37:6402–9.
  • Nicholls P. Cytochrome c binding to enzymes and membranes. Biochim Biophys Acta 1974;346:261–310.
  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 1996;86:147–57.
  • Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci U S A 2002;99:1259–63.
  • Choi SY, Gonzalvez F, Jenkins GM, Slomianny C, Chretien D, Arnoult D, . Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell Death Differ 2007;14:597–606.
  • Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA, . A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2002;2:55–67.
  • Yamaguchi R, Lartigue L, Perkins G, Scott RT, Dixit A, Kushnareva Y, . Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol Cell 2008;31:557–69.
  • Barth PG, Scholte HR, Berden JA, Van der Klei-Van Moorsel JM, Luyt-Houwen IE, Van ‘t Veer-Korthof ET, . An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci 1983;62:327–55.
  • Houtkooper RH, Turkenburg M, Poll-The BT, Karall D, Perez-Cerda C, Morrone A, . The enigmatic role of tafazzin in cardiolipin metabolism. Biochim Biophys Acta 2009;1788:2003–14.
  • Malhotra A, Edelman-Novemsky I, Xu Y, Plesken H, Ma J, Schlame M, . Role of calcium-independent phospholipase A2 in the pathogenesis of Barth syndrome. Proc Natl Acad Sci U S A 2009;106:2337–41.
  • Schug ZT, Gottlieb E. Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochim Biophys Acta 2009;1788:2022–31.
  • Gonzalvez F, Schug ZT, Houtkooper RH, MacKenzie ED, Brooks DG, Wanders RJ, . Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J Cell Biol 2008;183:681–96.
  • Schug ZT, Gonzalvez F, Houtkooper RH, Vaz FM, Gottlieb E. BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane. Cell Death Differ 2011;18:538–48.
  • Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 2005;8:3–5.
  • Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008;183:795–803.
  • Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy 2009;5:706–8.
  • Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, . PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 2010;8:e1000298.
  • Cherra SJ, 3rd, Dagda RK, Tandon A, Chu CT. Mitochondrial autophagy as a compensatory response to PINK1 deficiency. Autophagy 2009;5:1213–4.
  • Dagda RK, Cherra SJ, 3rd, Kulich SM, Tandon A, Park D, Chu CT. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 2009;284:13843–55.
  • Geisler SHKM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W. PINK1/PARKIN – mediated mitophagy is dependant on VDAC1 and p62/SQSTM1. Nature 2010; 12:119–31.
  • Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, . PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 2009;107:378–83.
  • Whitworth AJ, Pallanck LJ. The PINK1/Parkin pathway: A mitochondrial quality control system? J Bioenerg Biomembr 2009;41:499–503.
  • Chen H, Chan DC. Mitochondrial dynamics – fusion, fission, movement, and mitophagy – in neurodegenerative diseases. Hum Mol Genet 2009;18:R169–76.
  • Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 2010;189:671–9.
  • Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, . Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 2008;27:433–46.
  • Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 2011;13:589–98.
  • Gomes LC, Scorrano L. High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim Biophys Acta 2008;1777:860–6.
  • Twig G, Shirihai OS. The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal 2011;14:1939–51.
  • Rosivatz E, Woscholski R. Removal or masking of phosphatidylinositol(4,5)bisphosphate from the outer mitochondrial membrane causes mitochondrial fragmentation. Cell Signal 2011;23:478–86.
  • Xu FY, McBride H, Acehan D, Vaz FM, Houtkooper RH, Lee RM, . The dynamics of cardiolipin synthesis post-mitochondrial fusion. Biochim Biophys Acta 2010;1798:1577–85.
  • Som A, Yang L, Wong GC, Tew GN. Divalent metal ion triggered activity of a synthetic antimicrobial in cardiolipin membranes. J Am Chem Soc 2009;131:15102–3.
  • DeVay RM, Dominguez-Ramirez L, Lackner LL, Hoppins S, Stahlberg H, Nunnari J. Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J Cell Biol 2009;186:793–803.
  • Epand RF, Tokarska-Schlattner M, Schlattner U, Wallimann T, Epand RM. Cardiolipin clusters and membrane domain formation induced by mitochondrial proteins. J Mol Biol 2007;365:968–80.
  • Montero J, Mari M, Colell A, Morales A, Basanez G, Garcia-Ruiz C, . Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death. Biochim Biophys Acta 2010;1797:1217–24.
  • Stromhaug PE, Berg TO, Fengsrud M, Seglen PO. Purification and characterization of autophagosomes from rat hepatocytes. Biochem J 1998;335(Pt 2):217–24.
  • Szewczyk A, Wojtczak L. Mitochondria as a pharmacological target. Pharmacol Rev 2002;54:101–27.
  • Ichimura Y, Imamura Y, Emoto K, Umeda M, Noda T, Ohsumi Y. In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J Biol Chem 2004;279:40584–92.
  • Vance JE, Vance DE. Phospholipid biosynthesis in mammalian cells. Biochem Cell Biol 2004;82:113–28.
  • Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, . Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010;141:656–67.
  • Bernales S, McDonald KL, Walter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 2006;4:e423.
  • van der Vaart A, Griffith J, Reggiori F. Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol Biol Cell 2010;21:2270–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.