23
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Inhibition of Apatite Formation by Vitronectin

, , , &
Pages 101-108 | Received 03 Jun 1999, Accepted 12 Nov 1999, Published online: 06 Aug 2009

References

  • Schmidt W. J. Uber die kristallorientierung im zahnschmelz. Naturwissenschaften 1936; 24: 361
  • Robinson R. A., Watson M. L. Collagen‐crystal relationships in bone as seen in the electron microscope. Anat. Rec 1952; 114: 383–410
  • Glimcher M. J. Mechanisms of calcification in bone: role of collagen fibrils and collagen‐phosphoprotein complexes in vitro and in vivo. Anat. Rec 1989; 224: 139–153
  • Termine J. D., Kleinman H. K., Whitson S. W., Conn K. M., McGarvey M. L., Martin G. R. Osteonectin, a bone‐specific protein linking mineral to collagen. Cell 1981; 26: 99–105
  • Saito T., Yamauchi M., Crenshaw M. A. Apatite induction by insoluble dentin collagen. J. Bone Miner. Res 1998; 13: 265–270
  • Boskey A. L. Matrix proteins and mineralization: an overview. Connect. Tissue Res 1996; 35: 357–363
  • Boskey A. L., Maresca M., Doty S., Sabsay B., Veis A. Concentration‐dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth. Bone Miner 1990; 11: 55–65
  • Menanteau J., Neuman W. F., Neuman M. W. A study of bone proteins which can prevent hydroxyapatite formation. Metab. Bone Dis. Relat. Res 1982; 4: 157–162
  • Linde A., Lussi A., Crenshaw M. A. Mineral induction by immobilized polyanionic proteins. Calcif. Tissue Int 1989; 44: 286–295
  • Romberg R. W., Werness P. G., Riggs B. L., Mann K. G. Inhibition of hydroxyapatite crystal growth by bone‐specific and other calcium‐binding proteins. Biochemistry 1986; 25: 1176–1180
  • Majmudar G., Bole D., Goldstein S. A., Bonadio J. Bone cell culture in a three‐dimensional polymer bead stabilizes the differentiated phenotype and provides evidence that osteoblastic cells synthesize type III collagen and fibronectin. J. Bone Miner. Res 1991; 6: 869–881
  • Weiss R. E., Reddi A. H. Synthesis and localization of fibronectin during collagenous matrix‐mesenchymal cell interaction and differentiation of cartilage and bone in vivo. Proc. Nat. Acad. Sci. USA 1980; 77: 2074–2078
  • Amphlett G. W., Hrinda M. E. The binding of calcium to human fibronectin. Biochem. Biophys. Res. Commun 1983; 111: 1045–1053
  • Horada N., Tajima K., Takeuchi H., Doi Y., Moriwaki Y., Fujii T., Shibuya K., Kito S., Abe R. The mechanism of dental plaque and dental calculus formation by fibronectin. 5. Adsorption of fibronectin onto hydroxyapatite in phosphate solution. Nippon Shishuhyo Gakkai Kaishi 1986; 28: 125–130
  • Couchourel D., Escoffier C., Rohanizadeh R., Bohic S., Daculsi G., Fortun Y., Padrines M. Effects of fibronectin on hydroxyapatite formation. J. Inorg. Biochem 1999; 73: 129–136
  • Robey P. G., Boskey A. L. The biochemistry of bone. Osteoporosis, R. Marcus, D. Feldman, J. Kelsey. Academic Press, New York 1996; 95–183
  • Grzesik W. J., Robey P. G. Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J. Bone Miner. Res 1994; 9: 487–496
  • Mintz K. P., Grzesik W. J., Midura R. J., Robey P. G., Termine J. D., Fischer L. W. Purification and fragmentation of nondenaturated bone sialoprotein: Evidence for a cryptic, RGD‐resistant cell attachment domain. J. Bone Miner. Res 1993; 8: 985–995
  • Seiffert D. Detection of vitronectin in mineralized bone matrix. J. Histochem. Cytochem 1996; 44: 275–280
  • Sammons R. L., Sharpe J., Marquis P. M. Use of enhanced chemiluminescence to quantify protein adsorption to calcium phosphate materials and microcarrier beads. Biomaterials 1994; 15: 842–847
  • Rohanizadeh R., Padrines M., Bouler J. M., Couchourel D., Fortun Y., Daculsi G. Apatite precipitation after incubation of biphasic calcium‐phosphate ceramic in various solutions: influence of seed species and proteins. J. Biomed. Mater. Res 1998; 42: 530–539
  • Endo A. Potential role of phosphoprotein in collagen mineralization: an experiment study in vitro. J. Orthop. Assoc 1987; 61: 563–569
  • Hunter G. K., Hauschka P. V., Poole A. R., Rosenberg L. C., Goldberg H. A. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem. J 1996; 317: 59–64
  • Yamada S., Nakamura T., Kokubo T., Oka M., Yamamuro T. Osteoclastic‐resorption of apatite formed on apatite and wollastonite‐containing glass‐ceramic by a simulated body fluid. J. Biomed. Mater. Res 1994; 28: 1357–1363
  • LeGeros R. Z. Calcium phosphates in oral biology and medicine. Monographs in Oral Science, H. Meyers. Karger Press, New York 1991; Vol. 15
  • Eanes E. D., Meyer J. L. The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH. Calcif. Tissue Int 1977; 23: 259–269
  • Hunter G. K., Kyle L., Goldberg H. A. Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin‐mediated inhibition of hydroxyapatite formation. Biochem. J 1994; 300: 723–728
  • Boskey A. L., Maresca M., Ullrich W., Doty S. B., Butler W. T., Prince C. W. Osteopontin‐hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin‐gel. Bone Miner 1993; 22: 147–159
  • Preissner K. T. Structure and biological role of vitronectin. Annu. Rev. Cell Biol 1991; 7: 275–310
  • Hunter G. K., Goldberg H. A. Nucleation of hydroxyapatite by bone sialoprotein. Proc. Nat. Acad. Sci. USA 1993; 90: 8562–8565
  • Garside J. Nucleation. Biological Mineralization and Demineralization, G. H. Nancollas. Springer Verlag, Berlin 1982; 23–25
  • Mann S. Mineralization in biological systems. Struc. Binding 1983; 54: 127–174
  • Addadi L., Weiner S. Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc. Natl. Acad. Sci. USA 1985; 82: 4110–4114
  • Füredi‐Milhofer H., Moradian‐Oldak J., Weiner S., Veis A., Mintz K. P., Addadi L. Interactions of matrix proteins from mineralized tissues with octacalcium phosphate. Connect. Tissue Res 1994; 30: 251–264
  • Fujisawa R., Kuboki Y. Preferential adsorption of dentin and bone acidic proteins on the (100) face of hydroxyapatite crystals. Biochim. Biophys. Acta 1991; 1075: 56–60
  • Greenfield E. M., Wilson D. C., Crenshaw M. A. Ionotropic nucleation of calcium carbonate by molluscan matrix. Am. Zool 1984; 24: 925–932

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.