17
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Causal Relationship between Conformational Change and Inhibition of Domain Functions of Glycoxidative Fibronectin

, , , , , & show all
Pages 117-129 | Received 01 Oct 1999, Accepted 04 Jan 2000, Published online: 06 Aug 2009

References

  • Vlassara H., Bucala R., Striker L. Pathogenic effects of advanced glycosylation: biochemical, biological and clinical implications for diabetes and aging. Lab. Invest 1994; 70: 138–151
  • Wells‐Knecht M. C., Lyons T. J., McCance D. R., Thorpe S. R., Baynes J. W. Age‐dependent increase in ortho‐tyrosine and methionine sulfoxide in human skin collagen is not accelerated in diabetes. Evidence against oxidative stress in diabetes. J. Clin. Invest 1997; 100: 839–846
  • Meng J., Sakata N., Takebayashi S., Asano T., Futata T., Nagai R., Ikeda K., Horiuchi S., Myint T., Taniguchi N. Glycoxidation in aortic collagen from STZ‐induced diabetic rats and its relevance to vascular damage. Atherosclerosis 1998; 136: 355–365
  • Hynes R. O., Yamada K. M. Fibronectin: multifunctional modular glycoproteins. J. Cell. Biol 1982; 95: 369–377
  • Cohen M. P., Ku L. Inhibition of fibronectin binding to matrix components by nonenzymatic glycosylation. Diabetes 1984; 33: 970–974
  • Krantz S., Lober M., Thiele M., Teuscher E. Diminished adhesion of endothelial aortic cells on fibronectin and collagen layers after nonenzymatic glycation. Exp. Clin. Endocrinol 1988; 91: 155–160
  • Tarsio J. F., Reger L. A., Furcht L. T. Decreased interaction of fibronectin, type IV collagen, and heparin due to nonenzymatic glycation: implications for diabetes mellitus. Biochemistry 1987; 26: 1014–1020
  • Raabe H. M., Molsen H., Mlinaric S. M., Acil Y., Sinnecker G. H. G., Notbohm H., Kruse K., Muller P. K. Biochemical alterations in collagen IV induced by in vitro glycation. Biochem. J 1996; 319: 699–704
  • Fu M. X., Wells‐Knecht K. J., Blackledge J. A., Lyons T. J., Thorpe S. R., Baynes J. W. Glycation, glycoxidation, and cross‐linking of collagen by glucose. Diabetes 1994; 43: 676–683
  • Coussons P. J., Jacoby J., McKay A., Kelly S. M., Price N. C., Hunt J. V. Glucose modification of human serum albumin: a structural study. Free Rad. Biol. Med 1997; 22: 1217–1227
  • Sakai K., Fujii T., Hayashi T. Conformational change precedes the formation of multimeric fibronectin. J. Biochem 1996; 119: 58–62
  • Gilchrest B. A., Nemore R. E., Maciag T. Growth of human keratinocytes on fibronectin‐coated plates. Cell. Biol. Int. Rep 1980; 4: 1009–1016
  • Ikeda K., Higashi T., Sano Ft., Jinnouchi Y., Yoshida M., Araki T., Ueda S., Horiuchi S. N‐(Carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry 1996; 35: 8075–8083
  • Engvall E., Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int. J. Cancer 1977; 20: 1–5
  • Lewinsohn D. M., Nickoloff B. J., Butcher E. C. A fluorometric approach to the quantitation of cell number with application to a cell adhesion assay. J. Immunol. Methods 1988; 110: 93–100
  • Sakata N., Fujimilsu K., Jimi S., Takebayashi S. PDGF‐growth factor from SV40‐transformed smooth muscle cells promotes growth in an autocrine or paracrine manner. Exp. Mol. Pathol 1994; 60: 39–51
  • Degenhardt T. P., Grass L., Reddy S., Thorpe S. R., Diamandis E. P., Bynes J. W. The serum concentration of the advanced glycation end‐product N‐(carboxymethyl)‐lysine is increased in uremia. Kidney Int 1997; 52: 1064–1067
  • Sell D. R., Monnier V. M. End‐stage renal disease and diabetes catalyze the formation of a pentose‐derived crosslink from aging human collagen. J. Clin. Invest 1990; 85: 380–384
  • Sakata N., Imanaga Y., Meng J., Tachikawa Y., Takebayashi S., Nagai R., Horiuchi S. Increased advanced glycation end products in atherosclerotic lesions of patients with end‐stage renal disease. Atherosclerosis 1999; 142: 67–77
  • Meng J., Sakata N., Imanaga Y., Tachikawa Y., Chihara J., Takebayashi S. Evidence for glycoxidation and lipoperoxidation in patients with chronic renal failure. Clin. Nephrol 1999; 51: 280–289
  • Ucsugi N., Sakata N., Nagai R., Johno T., Horiuchi S., Takebayashi S. Glycoxidative modification of AA amyloid deposits in renal tissue. Nephrol. Dial. Transplant, (in print)
  • Sakata N., Imanaga Y., Meng J., Tachikawa Y., Takebayashi S., Nagai R., Horiuchi S., Itabe H., Takano T. Immunohistochemical localization of different epitopes of advanced glycation end products in human atherosclerotic lesions. Atherosclerosis 1998; 141: 61–75
  • Ahmed M. U., Thorpe S. R., Baynes J. W. Identification of N‐carboxymethyl‐lysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem 1986; 261: 4889–4894
  • Mullarkey C. J., Edelstein D., Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem. Biophys. Res. Comm 1990; 173: 932–939
  • Chase K. V., Carubelli R., Nordquist R. E. The role of nonenzymatic glycosylation, transition metals, and free radicals in the formation of collagen aggregates. Arch. Biochem. Biophys 1991; 288: 473–480
  • Tanaka I., Kawamura N., Myint T., Miyazawa N., Suzuki K., Maruyama N., Mino M., Taniguchi N. Glycated Cu,Zn‐superoxide dismutase in rat lenses: evidence for the presence of fragmentation in vivo. Biochem. Biophys. Res. Commun 1996; 219: 243–248
  • Islam K. N., Takahashi M., Higashiyama S., Myint T., Urozumi N. Fragmentation of ceruloplasmin following non‐enzymatic glycation reaction. J. Biochem 1995; 118: 1054–1060
  • Hunt J. V., Wolff S. P. Oxidative glycation and free radical production, a causal mechanism of diabetic complications. Free Radic. Res. Commun 1991; 12–13(Ptl)115–123
  • Charonis A. S., Reger L. A., Dege J. E., Kouzi‐Koliakos K., Furcht L. T., Wohlhueter R. M., Tsilibary E. C. Laminin alterations after in vitro nonenzymatic glycosylation. Diabetes 1990; 39: 807–814
  • Tarsio J. F., Reger L. A., Furcht L. T. Molecular mechanisms in basement membrane complications of diabetes. Alterations in heparin, laminin, and type IV collagen association. Diabetes 1988; 37: 532–539
  • Haitoglou C. S., Tsilibary E. C., Brownlee M., Charonis A. S. Altered cellular interactions between endothelial cells and nonenzymatically glucosylated laminin/type IV collagen. J. Biol. Chem 1992; 267: 12404–12407
  • Tarsio J. F., Wigness B., Rhode T. D., Rupp W. M., Buchwald H., Furcht L. T. Nonenzymatic glycation of fibronectin and alterations in the molecular association of cell matrix and basement membrane components in diabetes mellitus. Diabetes 1985; 34: 477–484
  • Ruoslahti E., Pierschbacher M. D. New perspectives in cell adhesion: RGD and integrins. Science 1987; 238: 491–496
  • Humphries M. J., Akiyama S. K., Komonya A., Olden K., Yamada K. M. Identification of an alternatively spliced site in human plasma fibronectin that mediates cell type‐specific adhesion. J. Cell. Biol 1986; 103: 2637–2647
  • Raabe H. M., Höpner J. H., Notbohm H., Sinnecker G. H. G., Kruse K., Müller P. K. Biochemical and biophysical alterations of the 7S and NCl domain of collagen IV from diabetic kidneys. Diabetologia 1998; 41: 1073–1079
  • Odermatt E., Engel J. Shape, conformation and stability of fibronectin fragments determined by electron microscopy, circular dichroism and ultracentrifugation. J. Mol. Biol 1982; 159: 109–123
  • Becker J. W., Reeke G. N., Jr. Three‐dimensional structure of β2‐microglobulin. Proc. Natl. Acad. Sci. USA 1985; 82: 4225–4229
  • Homma N., Gejyo F., Isemura M., Arakawa M. Collagen‐binding affinity of beta‐2‐microglobulin, a preprotein of hemodialysis‐associated amyloidosis. Nephron 1989; 53: 37–40
  • Baron M., Norman D., Willis A., Campbell L. A. Structure of the fibronectin type I module. Nature 1990; 345: 642–646
  • Main A. L., Harvey T. S., Baron M., Boyd J., Campbell L. D. The three‐dimensional structure of the tenth type III module of fibronectin: an insight into RGD‐mediated interactions. Cell 1992; 71: 671–678
  • Hammes H. P., Weiss A., Hess S., Araki N., Horiuchi S., Brownlee M., Preissner K. T. Modification of vitronectin by advanced glycation alters functional properties in vitro and in the diabetic retina. Lab. Invest 1996; 75: 325–338
  • Chace K. V., Carubelli R., Nordquist R. S. The role of nonenzymatic glycosylation, transition metals, and free radicals in the formation of collagen aggregates. Arch. Biochim. Biophys 1991; 288: 473–480
  • Sakai K., Fujii T., Hayashi T. Cell‐free formation of disulfide‐bonded multimer from isolated plasma fibronectin in the presence of a low concentration of SH reagent under a physiological condition. J. Biochem 1994; 115: 415–421

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.