11
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Coordinate Regulation of Matrix Metalloproteinase-1 and Tissue Inhibitor of Metalloproteinase-1 Expression in Human Vascular Smooth Muscle Cells

, , , , , , , , & show all
Pages 143-153 | Received 04 Jun 1999, Accepted 31 Jan 2000, Published online: 06 Aug 2009

References

  • Chamley J. H., Campbell G. R., Burnstock G. Dedifferentiation, redifferentiation, and bundle formation of smooth muscle cells in tissue culture: the influence of cell number and nerve fibers. J. Embryol. Exp. Morphol 1974; 32: 297–323
  • Chamley‐Campbell J. H., Champbell G. R., Ross R. Phenotype‐dependent response of cultured aortic smooth muscle to serum mitogens. J. Cell. Biol 1981; 89: 379–383
  • Thyberg J., Hedin U., Sjolund M., Palmberg L., Bottger B. A. Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Arteriosclerosis 1990; 10: 966–990
  • Owens G. K., Loeb A., Gordon D., Thompson M. M. Expression of smooth muscle‐specific α‐isoactin in cultured vascular smooth muscle cells: relationship between growth and cytodifferentiation. J. Cell. Biol 1986; 102: 343–352
  • Majors A. K., Ehrhart L. A. Cell density and proliferation modulate collagen synthesis and procollagen mRNA levels in arterial smooth muscle cells. Exp. Cell. Res 1992; 200: 168–174
  • Ang A. H., Tachas G., Campbell J. H., Bateman J. F., Campbell G. R. Collagen synthesis by cultured rabbit aortic smooth muscle cells alteration with phenotype. Biochem. J 1990; 265: 461–469
  • Holderbaum D., Ehrhart L. A. Modulation of types I and III procollagen synthesis at various stages of arterial smooth muscle cell growth in vitro. Exp. Cell. Res 1984; 153: 16–24
  • Timpl R. Structure and biological activity of basement membrane proteins. Eur. J. Biochem 1989; 180: 487–502
  • Lyons‐Giordano B., Conaway H., Kefalides N. A. The effect of heparin on fibronectin and thrombos‐pondin synthesis by human smooth muscle cells. Biochem. Biophys. Res. Commun 1987; 148: 1264–1269
  • Cizmeci‐Smith G., Langan E., Youkey J., Showalter L. J., Carey D. J. Syndecan‐4 is a primary‐response gene induced by basic fibroblast growth factor and arterial injury in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol 1997; 17: 172–180
  • Liau G., Chan L. M. Regulation of extracellular matrix RNA levels in cultured smooth muscle cells relationship to cellular quiescence. J. Biol. Chem, 264: 10315–10320
  • Sjölund M., Madsen K., von der Mark K., Thyberg J. Phenotype modulation in primary cultures of smooth muscle cells from rat aorta. Synthesis of collagen and elastin. Differentiation 1986; 32: 173–180
  • Nagase H., Barrett A., Woessner J. F., Jr. Nomenclature and glossary of the matrix metalloprotei‐nases. Matrix (Suppl.) 1992; 1: 421–424
  • Dollery C. M., McEwan J. R., Henney A. M. Matrix metalloproteinases and cardiovascular disease. Circ. Res 1995; 77: 863–868
  • Fabunmi R. P., Baker A. H., Murray E. J., Booth R. F., Newby A. C. Divergent regulation by growth factors and cytokines of 95 and 72 kDa gelatinases and tissue inhibitors or metalloproteinases‐1, ‐2, and ‐3 in rabbit aortic smooth muscle cells. Biochem. J 1996; 315(Pt. 1)335–342
  • Kennedy S. H., Qin H., Lin L., Tan E. M. Basic fibroblast growth factor regulates type I collagen and collagenase gene expression in human smooth muscle cells. Am. J. Pathol 1995; 146: 764–771
  • Yanagi H., Sasaguri Y., Sugama K., Morimatsu M., Nagase H. Production of tissue collagenase (matrix metalloproteinase 1) by human aortic smooth muscle cells in response to platelet‐derived growth factor. Atherosclerosis 1992; 91: 207–216
  • Sasaguri Y., Murahashi N., Sugama K., Kato S., Hiraoka K., Satoh T., Isomoto H., Morimastu M. Development‐related changes in matrix metalloproteinase expression in human aortic smooth muscle cells. Lab. Invest 1994; 71: 261–269
  • Tyagi S. C., Meyer L., Schmaltz R. A., Reddy H. K., Voelker D. J. Proteinases and restenosis in the human coronary artery: extracellular matrix production exceeds theexpressionofproteolyticactivity. Atherosclerosis 1995; 116: 43–57
  • Tyagi S. C., Meyer L., Kumar S., Schmaltz R. A., Reddy H. K., Voelker D. J. Induction of tissue metalloproteinase and its mitogenic response to endothelial cells in human atherosclerotic and restenotic lesions. Can. J. Cardiol 1996; 12: 353–362
  • Nikkari S. T., Geary R. L., Hatsukami T., Ferguson M., Forough R., Alpers C. E., Clows A. W. Expression of collagen, interstitial collagenase, and tissue inhibitor of metalloproteinase‐1 in restenosis after carotid endarterectomy. Am. J. Pathol 1996; 148: 777–783
  • Nikkari S. T., O'Brien K. D., Ferguson M., Hatsukami T., Welgus H. G., Alpers C. E., Clowes A. W. Interstitial collagenase (MMP‐1) expression in human carotid atherosclerosis. Circulation 1995; 92: 1393–1398
  • Li Z., Li L., Zielke H. R., Cheng L., Xiao R., Crow M. T., Stetler‐Stevenson W. G., Froehlich J., Lakatta E. G. Increased expression of 72‐kd type IV collagenase (MMP‐2) in human aortic atherosclerotic lesions. Am. J. Pathol 1996; 148: 121–128
  • Galis Z. S., Sukhova G. K., Lark M. W., Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Invest 1992; 94: 2493–2503
  • Galis Z. S., Muszynski M., Sukhova G. K., Simon‐Morrissey E., Libby P. Enhanced expression of vascular matrix metalloproteinases induced in vitro by cytokines and in regions of human atherosclerotic lesions. Ann. N.Y. Acad. Sci 1995; 748: 501–507
  • Pauly R. R., Passaniti A., Bilato C., Monticone R., Cheng L., Papadopoulos N., Gluzband Y. A., Smith L., Weinstein C., Lakatta E. G., Crow M. T. Migration of cultured vascular smooth muscle cells through a basement membrane barrier requires type IV collagenase activity and is inhibited by cellular differentiation. Circ. Res 1994; 75: 41–54
  • Bendeck M. P., Zempo N., Clowes A. W., Galardy R. E., Reidy M. A. Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ. Res 1994; 75: 539–545
  • Galis Z. S., Muszynski M., Sukohova G. K., Simon‐Morrissey E., Unemori E. N., Lark M. W., Amento E., Libby P. Cytokine‐stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ. Res 1994; 75: 181–189
  • Galis Z. S., Sukhova G. K., Libby P. Microscopic localization of active proteases by in situ zymography: detection of matrix metalloproteinase activity in vascular tissue. FASEB J 1995; 9: 974–980
  • Brown D. L., Hibbs M. S., Kearney M., Loushin C., Isner J. M. Identification of 92‐kDa gelatinase in human coronary atherosclerotic lesions association of active enzyme synthesis with unstable angina. Circulation 1995; 91: 2125–2131
  • Knox J. B., Sukhova G. K., Whittemore A. D., Libby P. Evidence for altered balance between matrix metalloproteinase and their inhibitors in human aortic diseases. Circulation 1997; 95: 205–212
  • Kato S., Shanley J. R., Fox J. C. Serum stimulation, cell‐cell interactions, and extracellular matrix independently influence smooth muscle cell phenotype in vitro. Am. J. Pathol 1996; 149: 687–697
  • Freshney R. I. Culture of animal cells, a manual of basic technique2nd edn, R. I. Freshney. Alan R. Liss Inc., New York 1987; 113–115
  • Gratzner H. G. Monoclonal antibody to 5‐bromo‐and 5‐iododeoxyuridine: a new reagent for detection of DNA replication. Science 1982; 218: 474–475
  • Mossman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays. J. Immunol. Methods 1983; 65: 55–63
  • Zhang J., Fujimoto N., Iwata K., Sakai T., Okada Y., Hayakawa T. A. One‐step sandwich enzyme immunoassay for human matrix metalloproteinase‐1 (interstitial collagenase) using monoclonal antibodies. Clin. Chim. Acta 1993; 219: 1–14
  • Kodama S., Iwata H., Yamashita K., Hayakawa T. Rapid one‐step sandwich enzyme immunoassay for tissue inhibitor of metalloproteinases, an application for rheumatoid arthritis serum and plasma. J. Immunol. Methods 1990; 127: 103–108
  • Herron G. S., Werb Z., Dwyer K., Banada M. J. Secretion of metalloproteinases by stimulated capillary endothelial cells. I. Production of procollagenases and prostromelysin exceeds expression of proteolytic activity. J. Biol. Chem 1986; 261: 2814–2818
  • Harris E. D., Jr., Vater C. A. Vertebrate collagenases. Methods in Enzymology 1982; 82: 423–452
  • Lee S. H., Hurwitz J. Mechanism of elongation of primed DNA by DNA polymerase delta, proliferating cell nuclear antigen, and activator 1. Proc. Natl. Acad. Sci 1990; 87: 5672–5676
  • Baker A. H., Zaltsman A. B., George S. J., Newby A. C. Divergent effects of tissue inhibitor of metalloproteinase‐1, ‐2, or ‐3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro TIMP‐3 promotes apoptosis. J. Clin. Invest 1998; 101: 1478–1487
  • Murahashi N., Sasaguri Y., Ohuchida M., Kakita N., Morimatsu M. Immortalization of human aortic smooth muscle cells with ori‐mimus SV 40 DNA. Biotech. and Appl. Biochem 1992; 16: 152–160
  • Zempo N., Kenagy R. D., Au Y. P., Bendeck M., Clowes M. M., Reidy M. A., Clowes A. W. Matrix metalloproteinase of vascular wall cells are increased in balloon‐injured rat carotid artery. J. Vase. Surg 1994; 20: 209–217
  • Mayne R. Collagenous proteins of blood vessels. Arteriosclerosis 1986; 6: 585–593
  • Goldberg G. I., Wilhelm S. M., Kronberger A., Bauer E. A., Grant G. A., Eisen A. Z. Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation‐induced rat protein. J. Biol. Chem 1986; 261: 6600–6605
  • Docherty A. J., Lyons A., Smith B. J., Wright E. M., Stephens P. E., Harris T. J., Murphy G., Reynolds J. J. Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid‐potentiating activity. Nature (London) 1985; 318: 66–69
  • Stetler‐Stevenson W. G., Krutzsch H. C., Liotta L. A. Tissue inhibitor of metalloproteinase (TIMP‐2). A new member of the metalloproteinase inhibitor family. J. Biol. Chem 1989; 264: 17374–17378
  • Howard E. W., Bullen E. X., Banda M. J. Preferential inhibition of 72‐ and 92‐kDa gelatinases by tissue inhibitor of metalloproteinases‐2. J. Biol. Chem 1991; 266: 13070–13075
  • Wang H., Moore S., Alavi M. Z. Synthesis of tissue inhibitor of metalloproteinase‐1 (TIMP‐1) in rabbit aortic neointima after selective de‐endothelialization. Atherosclerosis 1996; 126: 95–104
  • Fabunmi R. P., Sukhova G. K., Sugiyama S., Libby P. Expression of tissue inhibitor of metalloproteinase‐3 in human atheroma and regulation in lesion‐associated cells. A potential protective mechanism in plaque stability. Circ. Res 1998; 83: 270–278
  • Shima I., Sasaguri Y., Kusukawa J., Nakano R., Yamana H., Fujita H., Kakegawa T., Morimatsu M. Production of matrix metalloproteinase 9 (92kDa gelatinase) by human esophageal squamous cell carcinoma in response to epidermal growth factor. Br. J. Cancer 1993; 67: 721–727
  • Hiraoka K., Sasaguri Y., Komiya S., Zynmyo M., Inoue A., Morimatsu M. Effect of lipid peroxide on the production of matrix metalloproteinases by rheumatoid synovial fibroblasts. Exp. Mol. Pathol 1993; 59: 169–176
  • Greene J., Wang M., Liu Y. E., Raymond L. A., Rosen C., Shi Y. E. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J. Biol. Chem 1996; 271: 30375–30380
  • Dollery C. M., McEwan J. R., Wang M., Sang Q. A., Liu Y. E., Shi Y. E. TIMP‐4 is regulated by vascular injury in rats. Circ. Res 1999; 84: 498–504
  • Nagase H., Suzuki K., Morodomi T., Enghild J. J., Salvesen G. Activation mechanisms of the precursors of matrix metalloproteinases 1, 2 and 3. Matrix. (Suppl.) 1992; 1: 237–244
  • Sato H., Kida Y., Mai M., Endo Y., Sasaki T., Tanaka J., Seiki M. Expression of genes encoding type IV collagen‐degrading metalloproteinases and tissue inhibitors of metalloproteinases in various human tumor cells. Oncogene 1992; 7: 77–85
  • Li Z., Froehlich J., Galis Z. S., Lakatta E. G. Increased expression of matrix metalloproteinase‐2 in the thickened intima of aged rats. Hypertension 1999; 33: 116–123
  • Ross R. The pathologenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801–809

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.