893
Views
101
CrossRef citations to date
0
Altmetric
Research Article

Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen

&
Pages 242-254 | Received 25 Sep 2009, Accepted 28 Dec 2010, Published online: 15 Mar 2011

REFERENCES

  • Hodge, A.J., and Petruska, J.A. (1963). Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. In Aspects of Protein Structure, G.N. Ramachandran (ed.) pp. 289–300. New York: Academic Press.
  • Orgel, J.P.R.O., Irving, T.C., Miller, A., and Wess, T.J. (2006). Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. U.S.A. 103:9001–9005.
  • Landis, W.J., Song, M.J., Leith, A., McEwen, L., and McEwen, B. (1993). Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high voltage electron microscopic tomography and graphic image reconstruction. J. Struct. Biol. 110:39–54.
  • Robinson, R.A. (1952). An electron-microscope study of the crystalline inorganic component of bone and its relationship to the organic matrix. J. Bone Joint Surg. 34:389–434.
  • Robinson, R.A., and Watson, M.L. (1952). Collagen-crystal relationships in bone as seen in the electron microscope. Anat. Rec. 114:383–410.
  • Johnson, L.C. (1960). Mineralization of turkey leg tendon. I. Histology and histochemistry of mineralization. In Calcification in Biological Systems, R.F. Sognnaes (ed.) pp. 117–128. Washington, DC: American Association for the Advancement of Science.
  • Nylen, M.J., Scott, D.B., and Mosley, V.M. (1960). Mineralization of turkey leg tendon. II. Collagen-mineral relations as revealed by electron and x-ray microscopy. In Calcification in Biological Systems, R.F. Sognnaes (ed.) pp. 129–142. Washington, DC: American Association for the Advancement of Science.
  • Likens, R.C., Piez, K.A., and Kunde, M.L. (1960). Mineralization of turkey leg tendon. III. Chemical nature of the protein and mineral phases. In Calcification in Biological Systems, R.F. Sognnaes (ed.) pp. 143–149. Washington, DC: American Association for the Advancement of Science.
  • Weiner, S., and Traub, W. (1986). Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett. 206:262–266.
  • Arsenault, A.L. (1989). A comparative electron microscopic study of apatite crystals in collagen fibrils of rat bone, dentin and calcified turkey leg tendon. Bone Miner. 6:165–177.
  • Landis, W.J., and Arsenault, A.L. (1989). Vesicle- and collagen-mediated calcification in the turkey leg tendon. Connect. Tissue Res. 22:35–42.
  • Veis, A. (1993). Mineral-matrix interactions in bone and dentin. J. Bone Miner. Res. 8:S493–S497.
  • Lees, S., Prostak, K.S., Ingle, V.K., and Kjoller, K. (1994). The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy. Calcif. Tissue Int. 55:180–189.
  • Landis, W.J., and Silver, F.H. (2002). The structure and function of normally mineralizing avian tendons. Comp. Biochem. Physiol. A 133:1135–1157.
  • Glimcher, M.J., and Krane, S.M. (1968). The organization and structure of bone, and the mechanism of calcification. In Biology of Collagen. Treatise on Collagen, Vol. IIB, G.N. Ramachandran and B.S. Gould (eds.) pp. 68–251. New York: Academic Press.
  • Glimcher, M.J. (1984). Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Phil. Trans. Roy. Soc. Lond. B 304:479–508.
  • Shadwick, R.E. (1990). Elastic energy storage in tendons: Mechanical differences related to function and age. J. Appl. Physiol. 68:1033–1040.
  • Freeman, J.W., and Silver, F.H. (2004). Elastic energy storage in unmineralized and mineralized extracellular matrices: A comparison between molecular modeling and experimental measurements. J. Theor. Biol. 229:371–381.
  • Freeman, J.W., and Silver, F.H. (2004). Analysis of mineral deposition in turkey tendons and self-assembled collagen fibers using mechanical techniques. Connect. Tissue Res. 45:131–141.
  • Anderson, H.C. (1969). Vesicles associated with calcification in the matrix of epiphyseal cartilage. J. Cell Biol. 41:59–72.
  • Anderson, H.C. (1984). Mineralization by matrix vesicles. Scan. Electron Microsc. 2:953–964.
  • Bonucci, E. (1970). Fine structure and histochemistry of calcifying globules in epiphyseal cartilage. Z. Zellforsch. Mikroskop. Anat. 103:192–217.
  • Landis, W.J., and Song, M.J. (1991). Early mineral deposition in calcifying tendon characterized by high voltage electron microscopy and three-dimensional graphic imaging. J. Struct. Biol. 107:116–127.
  • Traub, W., Jodaikin, A., Arad, T., Veis, A., and Sabsay, B. (1992). Dentin phosphophoryn binding to collagen fibrils. Matrix 12:97–201.
  • Fisher, L.W., Torchia, D.A., Fohr, B., Young, M.F., and Fedarko, N. (2001). Flexible structures of SIBLING proteins, bone sialoprotein and osteopontin. Biochem. Biophys. Res. Commun. 280:460–465.
  • Qin, C., Brunn, J.C., Baba, O., Wygant, J.N., McIntyre, B.W., and Butler, W.T. (2003). Dentin sialoprotein isoforms: Detection and characterization of a high molecular weight dentin sialoprotein. Eur. J. Oral Sci. 111:235–242.
  • Tye, C.E., Rattray, K.R., Warner, K.J., Gordon, J.A.R., Sodek, J., Hunter, G.K., and Goldberg, H.A. (2003). Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein. J. Biol. Chem. 278:7949–7955.
  • Tye, C.E., Hunter, G.K., and Goldberg, H.A. (2005). Identification of the type I collagen-binding domain of bone sialoprotein and characterization of the mechanism of interaction. J. Biol. Chem. 280:13487–13492.
  • George, A., and Veis, A. (2008). Phosphorylated proteins and control over apatite nucleation, crystal growth and inhibition. Chem. Rev. 108:4670–4693.
  • Schmitt, F.O. (1956). Macromolecular interaction patterns in biological systems. Proc. Am. Phil. Soc. 100:476–486.
  • Weiner, S., and Traub, W. (1989). Crystal size and organization in bone. Connect. Tissue Res. 21:259–265.
  • McEwen, B.F., Song, M.J., and Landis, W.J. (1992). Quantitative determination of the mineral distribution in different collagen zones of calcifying tendon using high voltage electron microscopic tomography. J. Computer Assist. Micros. 3:201–210.
  • Landis, W.J., Hodgens, K.J., Arena, J., Song, M.J., and McEwen, B.F. (1996). The structural relation between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc. Res. Tech. 33:192–202.
  • Landis, W.J., Hodgens, K.J., Song, M.J., Arena, J., Kiyonaga, S., Marko, M., Owen, C., and McEwen, B.F. (1996). Mineralization of collagen occurs on fibril surfaces: Evidence from conventional and high voltage electron microscopy and three-dimensional imaging. J. Struct. Biol. 117:24–35.
  • Landis, W.J. (1999). An overview of vertebrate mineralization with emphasis on collagen-mineral interaction. Gravitational Space Biol. Bull. 12:15–26.
  • Maitland, M.E., and Arsenault, A.L. (1991). A correlation between the distribution of biological apatite and amino acid sequence of type I collagen. Calcif. Tissue Int. 48:341–352.
  • Landis, W.J., Silver, F.H., and Freeman, J.W. (2006). Collagen as a scaffold for biomimetic mineralization of vertebrate tissues. J. Mater. Chem. 16:1495–1503.
  • Weiner, S., and Price P.A. (1986). Disaggregation of bone into crystals. Calcif. Tissue Int. 39:365–375.
  • Orgel, J.P.R.O., Miller, A., Irving, T.C., Fischetti, R.F., Hammersley, A.P., and Wess, T.J. (2001). The in situ supermolecular structure of type I collagen. Structure 9:1061–1069.
  • Eyre, D. (1987). Collagen cross-linking amino acids. Methods Enzymol. 144:115–139.
  • Yamauchi, M., Katz, E.P., Otsubo, K., Teraoka, K., and Mechanic, G.L. (1989). Cross-linking and stereospecific structure of collagen in mineralized and nonmineralized skeletal tissues. Connect. Tissue Res. 21:159–169.
  • Otsubo, K., Katz, E.P., Mechanic, G.L., and Yamauchi, M. (1992). Cross-linking connectivity in bone collagen fibrils: The COOH-terminal locus of free aldehyde. Biochemistry 31:396–402.
  • Landis, W.J., and Silver, F.H. (2009). Mineral deposition in the extracellular matrices of vertebrate tissues: Identification of possible apatite nucleation sites on type I collagen. In Chemistry and Biology of Mineralized Tissues. Proceedings of the Ninth International Conference, Austin, TX, November, 2007, L. Bonewald and P. Krebsbach (eds.), Cells, Tissues, Organs 189:20–24.
  • Hulmes, D.J.S., and Miller, A. (1979). Quasi-hexagonal packing in collagen fibrils. Nature 282:878–880.
  • Christiansen, D.L., Huang, E.K., and Silver, F.H. (2000). Assembly of type I collagen: Fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol. 19:409–420.
  • Chapman, J.A. (1974). The staining pattern of collagen fibrils. I. An analysis of electron micrographs. Connect. Tissue Res. 2:137–150.
  • Chapman, J.A., and Hardcastle, R.A. (1974). The staining pattern of collagen fibrils. II. A comparison with patterns computer-generated from the amino acid sequence. Connect. Tissue Res. 2:151–159.
  • Hodge, A.J. (1989). Molecular models illustrating the possible distribution of “holes” in simple systematically staggered arrays of type I collagen molecules in native-type fibrils. Connect. Tissue Res. 21:137–147.
  • www.ncbi.nlm.nih.gov/entrez/viewer.fcgi, National Institutes of Health, Bethesda, MD.
  • Silver, F.H., Freeman, J.W., Horvath, I., and Landis, W.J. (2001). Molecular basis for elastic energy storage in mineralized tendon. Biomacromolecules 2:750–756.
  • Knott, L., and Bailey, A.J. (1998). Collagen cross-links in mineralizing tissues: A review of their chemistry, function, and clinical relevance. Bone 22:181–187.
  • Lowenstam, H.A., and Weiner, S. (1989). On Biomineralization. New York: Oxford University Press.
  • Stetler-Stevenson, W.G., and Veis, A. (1986). Type I collagen shows a specific binding affinity for bovine dentin phosphophoryn. Calcif. Tissue Int. 38:135–141.
  • Stetler-Stevenson, W.G., and Veis, A. (1987). Bovine dentin phosphophoryn: Calcium ion binding properties of a high molecular weight preparation. Calcif. Tissue Int. 40:97–102.
  • Curley-Joseph, J., and Veis, A. (1979). The nature of covalent complexes of phosphoproteins with collagen in the bovine dentin matrix. J. Dent. Res. 58:1625–1633.
  • Chen, Y., Bal, B.S., and Gorski, J.P. (1992). Calcium and collagen binding properties of osteopontin, bone sialoprotein, and bone acidic glycoprotein-75 from bone. J. Biol. Chem. 267:24871–24878.
  • George, A., Sabsay, B., Simonian, P.A., and Veis, A. (1993). Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. J. Biol. Chem. 268:12624–12630.
  • MacDougall, M., Simmons, D., Luan, X., Nydegger, J., Feng, J., and Gu, T.T. (1997). Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4: Dentin phosphoprotein DNA sequence determination. J. Biol. Chem. 272:835–842.
  • Dahl, T., Sabsay, B., and Veis, A. (1998). Type I collagen-phosphophoryn interactions: Specificity of the monomer-monomer binding. J. Struct. Biol. 123:162–168.
  • Ganss, B., Kim, R.H., and Sodek, J. (1999). Bone sialoprotein. Crit. Rev. Oral Biol. Med. 10:79–98.
  • Christiansen, D., and Silver, F.H. (1992). The pH dependent mineralization of a reconstituted collagen fiber: Physical and ultrastructural characterization. Biomimetics 1:265–291.
  • Christiansen, D., and Silver, F.H. (1993). Mineralization of an axially aligned collagenous matrix: A morphological and ultrastructural study. Cells and Materials 3:177–188.
  • Mertz, E.L., and Leikin, S. (2004). Interactions of inorganic phosphate and sulfate anions with collagen. Biochemistry 43:14901–14912.
  • Sweeney, S.M., Orgel, J.P., Fertala, A., McAuliffe, J.D., Turner, K.R., Di Lullo, G.A., Chen, S., Antipova, O., Perumal, S., Ala-Kokko, L., Forline, A., Cabral, W.A., Barnes, A.M., Marini, J.C., and San Antonio, J.D. (2008). Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J. Biol. Chem. 283:21187–21197.
  • Engle, J. (1997). Versatile collagens in invertebrates. Science 277:1785–1786.
  • Silver, F.H., Horvath, I., and Foran, D.J. (2002). Mechanical implications of the domain structure of fibril forming collagens: Comparison of the molecular and fibrillar flexibilities of the α-chains found in types I, II and III collagen. J. Theor. Biol. 216:243–254.
  • Hofmann, H., Voss, T., Juhn, K., and Engle, J. (1984). Localization of flexible sites in thread-like molecules from electron micrographs: Comparison of interstitial, basement membrane and intima collagens. J. Mol. Biol. 172:325–343.
  • Paterlini, M.G., Nemethy, G., and Scheraga, H.A. (1995). The energy of formation of internal loops in triple-helical collagen polypeptides. Biopolymers 35:607–619.
  • Piez, K.A., and Trus, B.I. (1978). Sequence regularities and packing of collagen molecules. J. Mol. Biol. 122:419–432.
  • Wess, T.J. (2008). Collagen fibrillar structure and hierarchies. In Collagen: Structure and Mechanics, P. Fratzl (ed.) pp. 49–80. New York: Springer Science+Business Media, LLC.
  • Hodge, A.J., and Schmitt, F.O. (1960). The charge profile of the tropocollagen macromolecule and the packing arrangement in native-type collagen fibrils. Proc. Natl. Acad. Sci. U.S.A. 46:186–197.
  • Trus, B.L., and Piez, K.A. (1976). Molecular packing of collagen: Three-dimensional analysis of electrostatic interactions. J. Mol. Biol. 108:705–732.
  • Itoh, T., Kobayashi, M., and Hashimoto, M. (1998). The role of intermolecular electrostatic interaction on appearance of the periodic band structure in type I collagen fibril. Jpn. J. Appl. Phys. 37:L190–L192.
  • Scott, J.E. (1996). Proteodermatan and proteokeratan sulfate (decorin, lumican/fibromodulin) proteins are horseshoe shaped. Implications for their interactions with collagen. Biochemistry 35:8795–8799.
  • Tenni, R., Viola, M., Weiser, F., Sini, P., Giudici, C., Rossi, A., and Tira, M.E. (2002). Interaction of decorin with CNBr peptides from collagens I and II: Evidence for multiple binding sites and lysyl residues in collagen. Eur. J. Biochem. 269:1428–1437.
  • McKee, M.D., Zalzal, S., and Nanci, A. (1996). Extracellular matrix in tooth cementum and mantle dentin: Localization of osteopontin and other noncollagenous proteins, plasma proteins, and glycoconjugates by electron microscopy. Anat. Rec. 245:293–312.
  • Gower, L.B. (2008). Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108:4551–4627.
  • Jee, S.S., Thula, T.T., and Gower, L.B. (2010). Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: Influence of polymer molecular weight. Acta Biomater. 6:3676–3686.
  • Nudelman, F., Pierterse, K., George, A., Bomans, P.H.H., Friedrich, H., Brylka, L.J., Hilbers, P.A.J., de With, G., and Sommerdijk, N.A.J.M. (2010). The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater. 9:1004–1009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.