193
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Characterization of Tissue-Specific and Developmentally Regulated Alternative Splicing of Exon 64 in the COL5A1 Gene

, , , , &
Pages 267-276 | Received 30 Jun 2011, Accepted 23 Oct 2011, Published online: 07 Dec 2011

REFERENCES

  • Exposito, J.Y., Larroux, C., Cluzel, C., Valcourt, U., Lethias, C., and Degnan, B.M. (2008). Demosponge and sea anemone fibrillar collagen diversity reveals the early emergence of A/C clades and the maintenance of the modular structure of type V/XI collagens from sponge to human. J. Biol. Chem. 283:28226–28235.
  • Olsen, B.R., Hoffmann, H., and Prockop, D.J. (1976). Interchain disulfide bonds at the COOH-terminal end of procollagen synthesized by matrix-free cells from chick embryonic tendon and cartilage. Arch. Biochem. Biophys. 175:341–350.
  • Bruckner, P., Bachinger, H., Timpl, R., and Engel, J. (1978). Three conformationally distinct domains in the amino-terminal segment of type III procollagen and its rapid triple helix leads to and comes from coil transition. Eur. J. Biochem. 90(3):595–603.
  • Wenstrup, R.J., Florer, J.B., Brunskill, E.W., Bell, S.M., Chervoneva, I., and Birk, D.E. (2004). Type V collagen controls the initiation of collagen fibril assembly. J. Biol. Chem. 279(51):53331–53337.
  • Birk, D.E., Fitch, J.M., Babiarz, J.P., Doane, K.J., and Linsenmayer, T.F. (1990). Collagen fibrillogenesis in vitro: Interaction of types I and V collagen regulates fibril diameter. J. Cell. Sci. 95(pt 4):649–657.
  • Linsenmayer, T.F., Gibney, E., Igoe, F., Gordon, M.K., Fitch, J.M., Fessler, L.I., and Birk, D.E. (1993). Type V collagen: Molecular structure and fibrillar organization of the chicken α 1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. J. Cell Biol. 121(5):1181–1189.
  • Haralson, M.A., Mitchell, W.M., Rhodes, R.K., Kresina, T.F., Gay, R., and Miller, E.J. (1980). Chinese hamster lung cells synthesize and confine to the cellular domain a collagen composed solely of B chains. Proc. Natl. Acad. Sci. USA 77:5206–5210.
  • Niyibizi, C., Fietzik, P.P., and van der Rest, M. (1984). Human placenta type V collagen. J. Biol. Chem. 259(22):14170–14174.
  • Rhodes, R.K., and Miller, E.J. (1981). Evidence for the existence of an alpha1(V)alpha2(V)alpha3(V) collagen molecule in human placental tissue. Coll. Relat. Res. 1(4):337–343.
  • Lees, J.F., Tasab, M., and Bulleid, N.J. (1997). Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen. EMBO J. 16(5):908–916.
  • Hoffman, G.G., Branam, A.M., Huang, G., Pelegri, F., Cole, W.G., Wenstrup, R.M., and Greenspan, D.S. (2010). Characterization of the six zebrafish clade B fibrillar procollagen genes, with evidence for evolutionarily conserved alternative splicing within the proα1(V) C-propeptide. Matrix Biol. 29(4):261–275.
  • Bonadio, J., Holbrook, K.A., Gelinas, R.E., Jacob, J., and Byers, P.H. (1985). Altered triple helical structure of type I procollagen in lethal perinatal osteogenesis imperfecta. J. Biol. Chem. 260:1734–1742.
  • Mitchell, A.L., Schwarze, U., Jennings, J.F., and Byers, P.H. (2009). Molecular mechanisms of classical Ehlers-Danlos syndrome. Hum. Mutat. 30(6):995–1002.
  • Wieringa, B., Hofer, E., and Weissmann, C. (1984). A minimal intron length but no specific internal sequence is required for splicing the large rabbit beta-globin intron. Cell 37(3):915–925.
  • Crovato, T.E., and Egebjerg, J. (2005). ASF/SF2 and SC35 regulate the glutamate receptor subunit 2 alternative flip/flop splicing. FEBS Lett. 579:4138–4144.
  • Gallego, M.E., Gattoni, R., Stevenin, J., Marie, J., and Expert-Bezancon, A. (1997). The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the β-tropomyosin alternative exon 6A. EMBO J. 16:1772–1784.
  • Chen, Y., Sumiyoshi, H., Oxford, J.T., Yoshioka, H., Ramirez, F., and Morris, N.P. (2001). Cis-acting elements regulate alternative splicing of exons 6A, 6B, and 8 of the α1(XI) collagen gene and contribute to the regional diversification of collagen XI matrices. Matrix Biol. 20:589–599.
  • Davies, G.B., Oxford, J.T., Hausafus, L.C., Smoody, B.F., and Morris, N.P. (1998). Temporal and spatial expression of alternative splice-forms of the α1(XI) collagen gene in fetal rat cartilage. Dev. Dyn. 213:12–26.
  • Lui, V.C., Ng, L.J., Nicholls, J., Tam, P.P., and Cheah, K.S. (1995). Tissue-specific and differential expression of alternatively spliced a1(II) collagen mRNAs in early human embryos. Dev. Dyn. 203:198–211.
  • Oxford, J.T., Doege, K.J., and Morris, N.P. (1995). Alternative exon splicing within the amino-terminal nontriple-helical domain of the rat pro-α1(XI) collagen chain generates multiple forms of the mRNA transcript which exhibit tissue-dependent variation. J. Biol. Chem. 270(16):9478–9485.
  • Ryan, M.C., and Sandell, L.J. (1990). Differential expression of a cysteine-rich domain in the amino-terminal propeptide of type II (cartilage) procollagen by alternative splicing of mRNA. J. Biol. Chem. 265(18):10334–10339.
  • Sugimoto, M., Kimura, T., Tsumaki, N., Matsui, Y., Nakata, K., Kawahata, J., Yasui, N., Kitamura, Y., Nomura, S., and Ochi, T. (1998). Differential in situ expression of α2(XI) collagen mRNA isoforms in the developing mouse. Cell Tissue Res. 292:325–332.
  • Tsumaki, N., and Kimura, T. (1995). Differential expression of an acidic domain in the amino-terminal propeptide of mouse Pro-α2(XI) collagen by complex alternative splicing. J. Biol. Chem. 270(5):2372–2378.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.