329
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Effects of Adipose Tissue Stem Cell Concurrent with Greater Omentum on Experimental Long-Bone Healing in Dog

, , , , &
Pages 334-342 | Received 14 Dec 2012, Accepted 19 Jan 2012, Published online: 27 Feb 2012

References

  • Arrington, E.D., Smith, W.J., Chambers, H.G., Bucknell, A.L., and Davino, N.A. (1996). Complications of iliac crest bone graft harvesting. Clin. Orthop. 329:300–309.
  • Damien, C., and Parsons, R. (1991). Bone graft and bone graft substitutes: Review of current technology and applications. J. Appl. Biomat. 2:187–208.
  • Vanheest, A., and Swiontkowski, M. (1999). Bone-graft substitutes. Lancet 353:28–29.
  • Baltzer, A.W., Lattermann, C., Whalen, J.D., Wooley, P., Weiss, K., Grimm, M., Ghivizzani, S.C., Robbins, P.D., and Evans, C.H. (2000). Genetic enhancement of fracture repair: Healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene. Gene Ther. 7:734.
  • Peng, H., Usas, A., Olshanski, A., Ho, A.M., Gearhart, B., Cooper, G.M., and Huard, J. (2005). VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J. Bone Miner. Res. 20:2017–2027.
  • Lee, J.Y., Peng, H., Usas, A., Musgrave, D., Cummins, J., Pelinkovic, D., Jankowski, R., Ziran, B., Robbins, P., and Huard, J. (2002). Enhancement of bone healing based on ex vivo gene therapy using human muscle-derived cells expressing bone morphogenetic protein 2. Hum. Gene Ther. 13:1201–1211.
  • Bostrom, M.P.G., Lane, J.M., Berberian, W.S., Missri, A.A.E., Tomin, E., Weiland, A., Doty, S.B., Glaser, D., and Rosen, V.M. (1995). Immunolocalization and expression of bone morphogenic proteins 2 and 4 in fracture healing. J. Orthop. Res. 13:357–367.
  • Cook, S.D., Baffes, G.C., Wolfe, M.W., Sampath, T.K., and Rueger, D.C. (1994). Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental bone defects. J. Bone Joint Surg. Am. 76:827–838.
  • Kirker-Head, A.C. (1995). Recombinant bone morphogenic protein: Novel substances for enhancing bone healing. Vet. Surg. 24:408–419.
  • Reddi, A.H. (1995). Bone morphogenetic proteins, bone marrow stromal cells, and mesenchymal stem cells. Maureen Owen revisited. Clin. Orthop. Relat. Res. 313:115–119.
  • Alexander, J.W. (1985). Leonard’s Orthopedic Surgery of the Dog and Cat. Orlando, FL: WB Saunders Company.
  • Alexander, J.W. (1987). Bone grafting. Vet. Clin. North Am. Small Anim. Pract. 17:811–819.
  • Brinker, W.O., Piermattei, D.L., and Flo, G.L. (1997). Bone grafting. In Small Animal Orthopedics and Fracture Repair, W.P. Brinker, D.L. Piremattei, and G.L. Flo (eds.) pp. 147–153. Orlando, FL: WB Saunders Company.
  • Fitch, R., Kerwin, S., Newman-Gage, H., and Sinibaldi, K.R. (1997). Bone autografts and allografts in dogs. Comp. Vet. Cont. Ed. 19:558–575.
  • Fox, S.M. (1984). Cancellous bone grafting in the dog: An overview. J. Am. Anim. Hosp. Assoc. 20:840–848.
  • McLaughlin, R.M., and Roush, J.K. (1998). Autogenous cancellous and cortico-cancellous bone grafting. Vet. Med. 93:1071–1074.
  • Bauer, T.W., and Muschler, G.F. (2000). Bone graft materials: An overview of the basic science. Clin. Orthop. Relat. Res. 371:10–27.
  • Keating, J.F., and McQueen, M.M. (2001). Substitutes for autologous bone graft in orthopaedic trauma. J. Bone Joint Surg. Am. 83-B:3–8.
  • Emami, M.J., Oryan, A., Saeidinasab, H., and Meimandi Parizi, A. (2002). The effect of bone marrow graft on bone healing: A radiological and biomechanical study. Iran. J. Med. Sci. 27:63–66.
  • Meimandi Parizi, A., Jelodar, G., Moslemi, H., Tafti, A.K., and Emami, M.J. (2010). Influence of hydroxyapatite on fracture healing in diabetic rats: Biomechanical and radiographic studies. Vet. Arhiv. 80:113–120.
  • Meimandi Parizi, A., and Zeidabadi nejad, G.R. (1997). Biomechanical and radiographical evaluation of the effects of constant direct current on the fracture healing of the radius in the rabbits. J. Facul. Vet. Med. Univ. Tehran 52:1–10.
  • Hollinger, J.O., Brekke, J., Gruskin, E., and Lee, D. (1996). Role of bone substitutes. Clin. Orthop. Relat. Res. 324:55–65.
  • Kim, D.H., Jenis, L., Berta, S.C., and Vaccaro, A.R. (2003). Bone graft alternatives in spinal fusion surgery. Curr. Opin. Orthop. 14:127–137.
  • Takada, T., Kamei, Y., Iwata, T., Yokoi, T., and Torii, S. (1998). Effect of omental lipid fraction on enhancement of skin flap survival. Ann. Plast. Surg. 41:70.
  • Moore, M.A.S. (2002). Putting the neo into neoangiogenesis. J. Clin. Invest. 109:313–316.
  • Glowacki, J. (1998). Angiogenesis in fracture repair. Clin. Orthop. Relat. Res. 355:S82.
  • Diaz-Flores, L., Gutierrez, R., Lopez-Alonso, A., Gonzalez, R., and Varela, H. (1992). Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin. Orthop. 275:280–286.
  • Kos, J., Nadinić, V., Huljev, D., Nadinić, I., Turčić, J., Košuta, D., Anić, T., Babić, T., Vnuk, D., Kreszinger, M., and Smolec, O. (2006). Healing of bone defect by application of free transplant of greater omentum. Vet. Arhiv. 76:367–379.
  • Saifzadeh, S., Pourreza, B., Hobbenaghi, R., Naghadeh, B.D., and Kazemi, S. (2009). Autogenous greater omentum, as a free nonvascularized graft, enhances bone healing: An experimental nonunion model. J. Invest. Surg. 22:129–137.
  • Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., and Hedrick, M.H. (2001). Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7:211–228.
  • Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., and Hedrick, M.H. (2002). Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13:4279–4295.
  • De Ugarte, D.A., Morizono, K., Elbarbary, A., Alfonso, Z., Zuk, P.A., Zhu, M., Dragoo, J.L., Ashjian, P., Thomas, B., and Benhaim, P. (2003). Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109.
  • Dragoo, J.L., Lieberman, J.R., Lee, R.S., Deugarte, D.A., Lee, Y., Zuk, P.A., Hedrick, M.H., and Benhaim, P. (2005). Tissue-engineered bone from BMP-2-transduced stem cells derived from human fat. Plast. Reconstr. Surg. 115:1665.
  • Hicok, K.C., Du Laney, T.V., Zhou, Y.S., Halvorsen, Y.D.C., Hitt, D.C., Cooper, L.F., and Gimble, J.M. (2004). Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng. 10:371–380.
  • Cowan, C.M., Shi, Y.Y., Aalami, O.O., Chou, Y.F., Mari, C., Thomas, R., Quarto, N., Contag, C.H., Wu, B., and Longaker, M.T. (2004). Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol. 22:560–567.
  • Dudas, J.R., Marra, K.G., Cooper, G.M., Penascino, V.M., Mooney, M.P., Jiang, S., Rubin, J.P., and Losee, J.E. (2006). The osteogenic potential of adipose-derived stem cells for the repair of rabbit calvarial defects. Ann. Plast. Surg. 56:543.
  • Lane, J.M., and Sandhu, H.S. (1987). Current approach to experimental bone grafting. Orthop. Clin. North Am. 18:213–225.
  • Heiple, K.G., Goldberg, V.M., Powell, A.E., Bos, G.D., and Zika, J.M. (1987). Biology of cancellous bone grafts. Orthop. Clin. North Am. 18:179–185.
  • Pearce, S.G. (2007). Animal models for bone repair. Eur. Cell. Mater. 14(Suppl. 1):42.
  • Tapp, H., Hanley Jr., E.N., Patt, J.C., and Gruber, H.E. (2009). Adipose-derived stem cells: Characterization and current application in orthopaedic tissue repair. Exp. Biol. Med. 234:1.
  • Dragoo, J.L., Samimi, B., Zhu, M., Hame, S.L., Thomas, B.J., Lieberman, J.R., Hedrick, M.H., and Benhaim, P. (2003). Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. J. Bone Joint Surg. Br. 85:740.
  • Sharp, J.G., Murphy, B.O., Jackson, J.D., Brusnahan, S.K., Kessinger, A., and Neff, J.R. (2005). Promises and pitfalls of stem cell therapy for promotion of bone healing. Clin. Orthop. Relat. Res. 435:52–61.
  • Bruder, S.P., Kraus, K.H., Goldberg, V.M., and Kadiyala, S. (1998). The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J. Bone Joint Surg. Am. 80:985–996.
  • Kon, E., Muraglia, A., Corsi, A., Bianco, P., Marcacci, M., and Martin, I. (2000). Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J. Biomed. Mater. Res. 49:328–337.
  • Lucarelli, E., Fini, M., Beccheroni, A., Giavaresi, G., Di Bella, C., Aldini, N.N., Guzzardella, G., Martini, L., Cenacchi, A., and Di Maggio, N. (2005). Stromal stem cells and platelet-rich plasma improve bone allograft integration. Clin. Orthop. Relat. Res. 435:62.
  • Korda, M., Blunn, G., Goodship, A., and Hua, J. (2008). Use of mesenchymal stem cells to enhance bone formation around revision hip replacements. J. Orthop. Res. 26:880–885.
  • Deckers, M.M.L., Karperien, M., van der Bent, C., Yamashita, T., Papapoulos, S.E., and Löwik, C.W.G.M. (2000). Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology 141:1667.
  • Hsu, W.K., Wang, J.C., Liu, N.Q., Krenek, L., Zuk, P.A., Hedrick, M.H., Benhaim, P., and Lieberman, J.R. (2008). Stem cells from human fat as cellular delivery vehicles in an athymic rat posterolateral spine fusion model. J. Bone Joint Surg. Am. 90:1043–1052.
  • Li, H., Dai, K., Tang, T., Zhang, X., Yan, M., and Lou, J. (2007). Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2. Biochem. Biophys. Res. Commun. 356:836–842.
  • Awad, H.A., Quinn Wickham, M., Leddy, H.A., Gimble, J.M., and Guilak, F. (2004). Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25:3211–3222.
  • Wickham, M.Q., Erickson, G.R., Gimble, J.M., Vail, T.P., and Guilak, F. (2003). Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin. Orthop. Relat. Res. 412:196.
  • Giordano, P.A., Griffet, J., and Argenson, C. (1994). Pedicled greater omentum transferred to the spine in a case of postoperative infection. Plast. Reconstr. Surg. 93:1508.
  • Glazer, H.S., Anderson, D.J., Cooper, J.D., Molina, P.L., and Sagel, S.S. (1992). Omental flap in lung transplantation. Radiology 185:395.
  • Guyuron, B., and McMahon, J. (1988). Foreign-body granuloma following bilateral facial reconstruction with an omental flap. Plast. Reconstr. Surg. 81:771.
  • Ignjatovi, M., Cuk, V., Zivoti-Vanovi, M., and Mini, L. (1998). New surgical technique of omental pedicle graft preparation for omentomyelopexy. Vojnosanit. Pregl. 55:247.
  • Iverson, I.G., Young, J.N., Ecker, R.R., Ennix, C.L., Lau, G., Stallone, R., Grimes, O., and May, I.A. (1986). Closure of bronchopleural fistulas by an omental pedicle flap. Am. J. Surg. 152:40–42.
  • Mansour, K.A., Thourani, V.H., Losken, A., Reeves, J.G., Miller Jr., J.I., Carlson, G.W., and Jones, G.E. (2002). Chest wall resections and reconstruction: A 25-year experience. Ann. Thorac. Surg. 73:1720.
  • Losken, A., Carlson, G.W., Culbertson, J.H., Hultman, C.S., Kumar, A.V., Jones, G.E., Bostwick Iii, J., and Jurkiewicz, M.J. (2002). Omental free flap reconstruction in complex head and neck deformities published online 11 January 2002. Head Neck 24:326–331.
  • Messineo, A., Filler, R.M., Bahoric, B., Smith, C., and Bahoric, A. (1991). Successful tracheal autotransplantation with a vascularized omental flap. J. Pediatr. Surg. 26:1296–1300.
  • Mixter, R.C., Rao, V.K., Katsaros, J., Noon, J., and Tan, E. (1990). Simultaneous reconstruction of cervical soft tissue and esophagus with a gastro-omental free flap. Plast. Reconstr. Surg. 86:905.
  • Normington, E.Y., Papay, F.A., and Yetman, R.J. (1996). Treatment of recurrent cerebrospinal fluid rhinorrhea with a free vascularized omental flap: A case report. Plast. Reconstr. Surg. 98:514.
  • O’Leary, D.P. (1999). Use of the greater omentum in colorectal surgery. Dis. Colon Rectum 42:533–539.
  • Panje, W.R., Pitcock, J.K., and Vargish, T. (1989). Free omental flap reconstruction of complicated head and neck wounds. Otolaryngology—head and neck surgery. Otolaryngol. Head Neck Surg. 100:588.
  • Pierie, J., de Graaf, P.W., Van Dijk, M., Renooij, W., van Vroonhoven, T., and Obertop, H. (2000). Improved healing of extraperitoneal intestinal anastomoses in the early phase when surrounded by omentum. Digest. Surg. 17:487–492.
  • Puma, F., Fedeli, C., Ottavi, P., Porcaro, G., Battista Fonsi, G., Pardini, A., and Daddi, G. (2003). Laparoscopic omental flap for the treatment of major sternal wound infection after cardiac surgery. J. Thorac. Cardiovasc. Surg. 126:1998–2002.
  • Roa, D.M., Bright, R.M., Daniel, G.B., McEntee, M.F., Sackman, J.E., and Moyers, T.D. (1999). Microvascular transplantation of a free omental graft to the distal extremity in dogs. Vet. Surg. 28:456–465.
  • Sandow, M.J., Hamilton, R.B., and Heden, P.G. (1985). A modified halo frame to assist omentum transfer to the scalp. Br. J. Plast. Surg. 38:288–291.
  • Shen, Y.M., and Shen, Z.Y. (2003). Greater omentum in reconstruction of refractory wounds. Chin. J. Traumatol. 6:81.
  • Shoshany, G., Shofty, R., Livne, E., Hayari, L., and Mordechovitz, D. (1996). Testicular neovascularization by “omentotesticulopexy”: A possible adjuvant in the surgical correction of high undescended testes. J. Pediatr. Surg. 31:1229–1232.
  • Oloumi, M.M., Derakhshanfar, A., Molaei, M.M., and Tayyebi, M. (2006). The angiogenic potential of autogenous free omental graft in experimental tibial defects in rabbit: Short-term preliminary histopathological study. J. Exp. Anim. Sci. 43:179–187.
  • Barnes, G.L., Kostenuik, P.J., Gerstenfeld, L.C., and Einhorn, T.A. (1999). Growth factor regulation of fracture repair. J. Bone Miner. Res. 14:1805–1815.
  • Kim, D.E., Schellingerhout, D., Ishii, K., Shah, K., and Weissleder, R. (2004). Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke 35:952–957.
  • Frank, J.A., Anderson, S.A., Kalsih, H., Jordan, E.K., Lewis, B.K., Yocum, G.T., and Arbab, A.S. (2004). Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging. Cytotherapy 6:621–625.
  • Li, S.C., Tachiki, L.M.L., Luo, J., Dethlefs, B.A., Chen, Z., and Loudon, W.G. (2010). A biological global positioning system: Considerations for tracking stem cell behaviors in the whole body. Stem Cell Rev. Rep. 6:317–333.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.