199
Views
32
CrossRef citations to date
0
Altmetric
Original Research Articles

Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4 V) structures fabricated by selective electron beam melting

, , , &
Pages 351-360 | Received 08 Apr 2013, Accepted 03 Jul 2013, Published online: 30 Sep 2013

References

  • Engh CA. Biological fixation in total hip arthroplasty. Thorofare (NJ): Slack; 1985
  • Akhavan S, Matthiesen MM, Schulte L, Penoyar T, Draay MJ, Rimnac CM, Goldberg VM. Clinical and histologic results related to a low-modulus composite total hip replacement stem. J Bone Joint Surg Am 2006;88:1308–14
  • Hartzband MA, Glassman AH, Goldberg VM, Jordan LR, Crowninshield RD, Fricka KB, Jordan LC. Survivorship of a low-stiffness extensively porous-coated femoral stem at 10 years. Clin Orthop Relat Res 2010;468:433--40
  • Karrholm J, Anderber C, Snorrason F, Thanner J, Langeland N, Malchau H, Herberts P. Evaluation of a femoral stem with reduced stiffness: a randomized study with use of radiostereometry and bone densitometry. J Bone Joint Surg Am 2002;84:1651–8
  • Dunand DC. Processing of titanium foams. Adv Eng Mater 2004;6:369–76
  • Kupp D, Claar D, Flemmig K. Processing of controlled porosity titanium-based materials. In: Ghosh A, Sanders S, Claar D, eds. Processing and properties of lightweight cellular metals and structures. Warrendale, Pennsylvania, USA: TMS Publications; 2002:61–71
  • Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 2006;27:2651–70
  • Turner AC. Finite element analysis of non-uniform stiffness distributions in hip implant stems. Seattle: University of Washington; 2009
  • Cansizoglu O, Harrysson O, Cormier D, West H, Mahale T. Properties of Ti-6Al-4V non-stochastic lattice structures fabricated via electron beam melting. Mater Sci Eng A Struct Mater 2008;492:468–74
  • Harrysson OLA, Cansizoglu O, Marcellin-Little DJ, Cormier DR, West HA. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C Biomim Mater Sens Syst 2008;28:366–73
  • Heinl P, Korner C, Singer RF. Selective electron beam melting of cellular titanium: mechanical properties. Adv Eng Mater 2008;10:882–8
  • Heinl P, Rottmair A, Koerner C, Singer RF. Cellular titanium by selective electron beam melting. Adv Eng Mater 2007;9:360–4
  • Li X, Wang C, Zhang W, Li Y. Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater Lett 2009;63:403–5
  • Ponader S, Vairaktaris E, Heinl P, Wilmowsky C, Rottmair A, Korner C, Singer RF, Holst S, Schlegel KA, Neukam FW and others. Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts. J Biomed Mater Res 2008;84A:1111–19
  • Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 2008;3:S131–9
  • Linsenmayer TF, Fitch JM, Schmid TM, Zak NB, Gibney E, Sanderson RD, Mayne R. Monoclonal antiobodies against chicken type V collagen: production, specificity, and use for immunocytochemical localization in embryonic cornea and other organs. J Cell Biol 1983;96:124–32
  • Niyibizi C, Eyre DR. Structural characteristics of cross-linking sites in type V collagen of bone: Chain specificities and heterotypic links to type I collagen. Eur J Biochem 1994;224:943–50
  • Landis WJ. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 1995;16:533–44
  • Fernandes RJ, Harkey MA, Weis M, Askew JW, Eyre DR. The post-translational phenotype of collagen synthesized by SAOS-2 osteosarcoma cells. Bone 2007;40:1343–51
  • Muller U, Imwinkelried T, Horst M, Sievers M, Graf-Hausner U. Do human osteoblasts grow into open-porous titanium? Eur Cell Mater 2006;11:8–15
  • Hrabe N. Characterization of cellular titanium for biomedical applications. Seattle: University of Washington; 2010
  • Hrabe NW, Heinl P, Flinn B, Körner C, Bordia RK. Compression-compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V). J Biomed Mater Res 2011;99B:313–20
  • Stegemann H. Microdetermination of hydroxyproline with chloramine-T and p-dimethylaminobenzaldehyde. Hoppe-Seyler's Z Physiol Chem 1958;311:41–5
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–5
  • Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, eds. Biomaterials science: an introduction to materials in medicine. 2nd ed. San Diego, California, USA: Elsevier Academic Press; 2004
  • Thouverey C, Strzelecka-Kiliszek A, Balcerzak M, Buchet R, Pikula S. Matrix vesicles originate from apical membrane microvilli of mineralizing osteoblast-like Saos-2 cells. J Cell Biochem 2009;106:127–38
  • Boccafoschi F, Bosetti M, Cannas M. Evaluation of bioresorbable implants from bovine bone: In vitro preliminary observations. J Appl Biomat Biomech 2005;3:35–41
  • Chouteau J, Bignon A, Chavassieux P, Chevalier J, Melin M, Fantozzi G, Boivin G, Hartmann D, Carret J-P. Cellular culture of osteoblasts and fibroblasts on macroporous calcium-phosphate bone substitutes. Rev Chir Orthop Reparatrice Appar Mot 2003;89:44–52
  • Xue W, Krishna BV, Bandyopadhyay A, Bose S. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater 2007;3:1007–18
  • Yang L, Sheldon BW, Webster TJ. The impact of diamond nanocrystallinity on osteoblast functions. Biomaterials 2009;30:3458–65
  • Verma D, Katti KS, Katti DR. Osteoblast adhesion, proliferation and growth on polyelectrolyte complex-hydroxyapatite nanocomposites. Philos Trans R Soc Lond A 2010;368:2083–97
  • Rodan SB, Imai Y, Thiede MA, Wesolowski G, Thompson D, Bar-Shavit Z, Shull S, Mann K, Rodan GA. Characterization of a human osteosarcoma cell line (SAOS-2) with osteoblastic properties. Cancer Res 1987;47:4961–6
  • Gronowicz G, McCarthy MB. Response of human osteoblasts to implant materials: integrin-mediated adhesion. J Ortho Res 1996;14:878–87
  • Bilbe G, Roberts E, Birch M, Evans DB. PCR phenotyping of cytokines, growth factors, and their receptors and bone matrix proteins in human osteoblast-like cell lines. Bone 1996;19:437–45
  • Matsuzaki E, Hiratsuka S, Hamachi T, Takahashi-Yanaga F, Hashimoto Y, Higashi K, Kobayashi M, Hirofuji T, Hirata M, Maeda K. Sphingosine-1-phosphate promotes the nuclear translocation of β-catenin and thereby induces osteoprotegerin gene expression in osteoblast-like cell lines. Bone 2013;55:315–24
  • Galea GL, Meakin LB, Sugiyama T, Zebda N, Sunters A, Taipaleenmaki H, Stein GS, van Wijnen AJ, Lanyon LE, Price JS. Estrogen receptor α mediates proliferation of osteoblastic cells stimulated by estrogen and mechanical strain, but their acute down-regulation of the Wnt antagonist Sost is mediated by estrogen receptor β. J Biol Chem 2013;288:9035–48
  • Niyibizi C, Eyre, DR. Bone type V collagen: chain composition and location of a trypsin cleavage site. Connect Tissue Res 1989;20:247–50
  • Gerstenfeld LC, Riva A, Hodgens K, Eyre DR, Landis WJ. Post-translational control of collagen fibrillogenesis in mineralizing cultures of chick osteoblasts. J Bone Miner Res 1993;8:1031–43
  • Ahmad M, McCarthy M, Gronowicz G. An in vitro model for mineralization of human ostoblast-like cells on implant materials. Biomaterials 1999;20:211–20
  • Beuvelot J, Portet D, Lecollinet G, Moreau M-F, Basle MF, Chappard D, Libouban H. In vitro kinetic study of growth and mineralization of osteoblast-like cells (Saos-2) on titanium surface coated with a RGD functionalized bisphosphonate. J Biomed Mater Res 2009;90B:873–81
  • Pereira ML, Carvalho JC, Peres F, Fernandes MH. Effect of nicotine in matrix mineralization by human bone marrow and Saos-2 cells culture on the surface of plasma-sprayed titanium implants. J Biomed Mater Res 2009;88A:84–93
  • Bobyn DJ, Mortimer ES, Glassman AH, Engh CA, MIller JE, Brooks CE. Producing and avoiding stress shielding: laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop Relat Res 1992;274:79–96
  • Im G-I, Sethi RK, Rubash HE, Shanbhag AS. Osteolysis in total hip arthroplasty: biological and clinical aspects. In: Sinha RK, ed. Hip replacement: current trends and controversies. New York: Marcel Dekker Inc.; 2002:177–212
  • Long M, Rack HJ. Titanium alloys in total joint replacement – a materials science perspective. Biomaterials 1998;19:1621–39
  • McNamara BP, Toni A, Taylor D. Effects of implant material properties and implant-bone bonding on stress shielding in cementless total hip arthroplasty. Key Eng Mater 1995;99–100:309–14
  • Huiskes R. Failed innovation in total hip replacement. Acta Orthop Scand 1993;64:699–716
  • Bugbee WD, Culpepper WJ, Engh EA, Engh CA. Long-term clinical consequences of stress-shielding after total hip arhroplasty without cement. J Bone Joint Surg Am 1997;79:1007–12
  • Engh CA Jr, Young AM, Engh CA, Sr Hopper RH. Clinical consequences of stress shielding after porous-coated total hip arthroplasty. Clin Orthop Relat Res 2003;417:157–63
  • Schmalzried TP, Callaghan JJ. Current concepts review – wear in total hip and knee replacements. J Bone Joint Surg Am 1999;81:115–36
  • Li X, Feng Y-F, Wang C-T, Li G-C, Lei W, Zhang Z-Y, Wang L. Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo. PLoS ONE 2012;7:e52049 . doi:10.1371/journal.pone.0052049

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.