88
Views
44
CrossRef citations to date
0
Altmetric
Original Article

Atomic Force Microscopy Studies of Crystal Surface Topology During Enamel Development

, , , , , & show all
Pages 91-100 | Accepted 09 Nov 1997, Published online: 07 Jul 2009

References

  • Robinson C., Briggs H. D., Atkinson P. J. Histology of enamel organ and chemical composition of adjacent enamel in rat incisors. Calcif. Tiss. Int. 1981; 33: 513–520
  • Fincham A. G., Belcourt A. B., Termine J. D. Changing patterns of enamel matrix proteins in the developing bovine tooth. Caries Res. 1982; 16: 64–71
  • Simmer J. P., Fincham A. G. Molecular mechanisms of dental enamel formation. Crit. Rev. Oral Biol. Med. 1995; 6: 82–108
  • Nylen M. U., Eanes E. D., Omnell K. A. Crystal growth in rat enamel. J. Cell Biol. 1963; 18: 109–123
  • Kerebel B., Daculsi G., Kerebel L. M. Ultrastructural studies of enamel crystallites. J. Dent. Res. 1979; 58B: 884–850
  • Cuisinier F. J. G., Steuer P., Senger B., Voegel J. C., Frank R. M. Human amelogenesis I: High resolution electron microscopy study of ribbon-like crystals. Calcif. Tiss. Int. 1992; 51: 259–268
  • Fukae M., Shimizu M. Studies on the proteins of developing bovine enamel. Archs. Oral Biol. 1974; 19: 381–386
  • Robinson C., Briggs H. D., Atkinson P. J., Weatherell J. A. Matrix and mineral changes in developing enamel. J. Dent. Res. 1979; 58: 871–880
  • Hiller C. R., Robinson C., Weatherell J. A. Variations in the composition of developing rat incisor enamel. Calcif. Tiss. Res. 1975; 18: 1–12
  • Robinson C., Fuchs P., Deutsch D., Weatherell J. A. Four chemically distinct stages in developing enamel from bovine incisor teeth. Caries Res. 1978; 12: 1–11
  • Robinson C., Kirkham J. Is the rat incisor typical?. INSERM 1984; 125: 377–386
  • Shore R. C., Robinson C., Kirkham J., Brookes S. J. Structure of Developing Enamel. Dental Enamel—Formation to Destruction, C. Robinson, J. Kirkham, R. C. Shore. CRC Press, Boca Raton 1995; 135–150
  • Weiner S., Price P. A. Disaggregation of Bone into Crystals. Calcif. Tiss. Int. 1986; 39: 365–375
  • Daculsi G., Kerebel B. High resolution electron microscope study of human enamel crystallites: Size, shape and growth. J. Ultrastruct. Res. 1978; 65: 163–172
  • Jongebloed W. L., Molenaar I., Arends J. Morphology and size distribution of sound and acid treated enamel crystallites. Calcif. Tiss. Res. 1975; 19: 109–123
  • Robinson C., Weatherell J. A., Hallsworth A. S. Variations in the composition of dental enamel within thin ground sections. Caries Res. 1971; 5: 44–57
  • Robinson C., Kirkham J., Hallsworth A. S. Volume distribution and concentration of protein mineral and water in developing dental enamel. Archs. Oral Biol. 1988; 33: 159–162
  • Robinson C., Kirkham J. The dynamics of amelogenesis as revealed by protein compositional studies. The Chemistry and Biology of Mineralized Tissues, W. T. Butler. Ebsco Media Inc., Birmingham, Alabama 1985; 248–263
  • Aoba T., Moreno E. C. Structural relationship of amelogenin proteins to their regulatory function of enamel mineralisation. J. Am. Chem. Soc 1991; 444: 85–106
  • Robinson C., Brookes S. J., Kirkham J., Bonass W. A., Shore R. C. Crystal growth in dental enamel: the role of amelogenins and albumin, Adv. Dent. Res. 1996; 10: 173–180
  • Robinson C., Kirkham J., Stonehouse N. J., Shore R. C. Control of crystal growth during enamel maturation. Connect. Tiss. Res. 1989; 22: 139–145
  • Eastoe J. E. Enamel protein chemistry—past, present and future. J. Dent. Res. 1979; 58B: 753–764
  • Lau E. C., Mohandas T. K., Shapiro L. J., Slavkin H. C., Snead M. L. Human and mouse amelogenin loci are on the sex chromosomes. Genomics 1989; 4: 162–168
  • Lau E. C., Simmer J. P., Bringas P., Hsu D. D. J., Hu C. C., Zeichner-David M., Thiemann F., et al. Alternative splicing of the mouse amelogenin primary RNA transcript contributes to amelogenin heterogeneity. Biochem. Biophys. Res. Comm. 1992; 188: 1253–1260
  • Brookes S. J., Robinson C., Kirkham J., Bonass W. A. Biochemistry and Molecular biology of amelogenin proteins of developing enamel. Archs. Oral Biol. 1995; 40: 1–14
  • Robinson C., Kirkham J., Shore R. C., Brookes S. J., Bonass W. A. Role of the Extracellular Matrix in Enamel Development. Dental Enamel—Formation to Destruction, C. Robinson, J. Kirkham, R. C. Shore. CRC Press, Boca Raton 1995; 105–134
  • Termine J. D., Belcourt A. B., Christner P. J., Conn K. M., Nylen M. U. Properties of dissociatively extracted foetal tooth matrix proteins. 1. Principle molecular species in developing bovine enamel. J. Biol. Chem. 1980; 255: 9760–9768
  • Robinson C., Kirkham J., Fincham A. The enam-elin non/amelogenin problem. A brief review. Connect. Tiss. Res. 1989; 22: 93–100
  • Samuel N., Bessem C., Bringas P., Slavkin H. C. Immunochemical homology between elasmobranch scale and tooth extracellular matrix proteins in Cephaloscyllium ventriosu. J. Craniofac. Gen. Dev. Biol. 1987; 7: 371–386
  • Fukae M., Tanabe T., Murakami C., Dohi N., Uchida T., Shimizu M. Primary structure of the porcine 89 kDa enamelin. Adv. Dent. Res. 1996; 10: 111–118
  • Akita H., Fukae M., Shimoda S., Aoba T. Localisation of glycosylated matrix proteins in secretory porcine enamel and their possible functional roles in enamel mineralisation. Archs. Oral Biol. 1992; 37: 953–962
  • Uchida T., Tanabe T., Fukae M., Shimizu M., Yamada M., Miake K., Kobayashi S. Immunochemical and immunohistochemical studies, using antisera against porcine 25 kDa amelogenin, 89 kDa enamelin and the 13–17 kDa non-amelogenins, on immature enamel of the pig and rat. Histochem. 1991; 96: 129–138
  • Small B. W., Murray J. J. Enamel opacities: prevalence, classifications and aetiological considerations. J. Dent. Res. 1978; 6: 33–42
  • Den Besten P. K., Giambro N. J. Dental Fluorosis. Dental Enamel: Formation to Destruction, C. Robinson, J. Kirkham, R. C. Shore. CRC Press, Boca Raton 1995; 245–264
  • Cuisinier F. J. G., Voegel J. C., Yacaman J., Frank R. M. Structure of initial crystals formed during human amelogenesis. J. Cryst. Growth 1992; 116: 314–318
  • Shibahara H., Tohda H., Yanagizawa T. High resolution electron microscopic observation of hydroxyapatite in tooth crystals. J. Elect. Mic. 1994; 43: 89–94
  • Angmar-Mansson B., Whitford G. M. Enamel fluorosis related to plasma F levels in the rat. Caries Res. 1984; 18: 25–32
  • Apkarian R. P., Gutekunst M. D., Joy D. C. High resolution SE-1 SEM study of enamel crystal morphology. J. Elec. Mic. Tech. 1990; 14: 70–78
  • Miake Y., Shimoda S., Fukae M., Aoba T. Epitaxial overgrowth of apatite crystals on the thin ribbon precursor at early stages of porcine enamel mineralisation. Calcif. Tiss. Int. 1993; 53: 249–256
  • Nelson D. G. A., Salimi H., Nancollas G. H. Octacalcium phosphate and apatite overgrowths: a crystallo-graphic and kinetic study. Calcif. Tiss. Int. 1993; 53: 257–261
  • Marshall A. F., Lawless K. R. TEM study of the central dark line in enamel crystals. J. Dent. Res. 1981; 60: 1773–1782
  • Robinson C., Kirkham J., Brookes S. J., Shore R. C. Chemistry of Mature Enamel. Dental Enamel—Formation to Destruction, C. Robinson, J. Kirkham, R. C. Shore. CRC Press, Boca Raton 1995; 167–192
  • Brown W. E., Smith J. P., Lehr J. R., Frazier W. A. Octacalcium phosphate and hydroxyapatite. Nature 1962; 196: 1048–1055
  • Driessens F. C. M., Verbeeck R. M. H. Dolomite as a possible magnesium-containing phase in human enamel. Calcif. Tiss. Int. 1985; 37: 376–380
  • Driessens F. C. M., Verbeeck R. M. H. The probable phase composition of the mineral in sound enamel and dentine. Bull. Soc. Chim. Belg. 1982; 91: 573–596
  • Rachinger W. A., Phakey P. P., Palamara J., Orams H. J. Planar faults in dental hydroxyapatite. Calcif. Tiss. Int. 1982; 34: 209–213
  • Johansen E. Electron microscopic and chemical studies of carious lesions with reference to the organic phase of affected tissues, Ann. New York Acad. Set 1965; 131: 776–785
  • Johnson N. W. Transmission electron microscopy of early carious enamel. Caries Res. 1967; 1: 356–369
  • Kay M. I., Young R. A., Posner A. S. Crystal structure of hydroxyapatite. Nature 1964; 204: 1050–1052
  • Onuma K., Atsuo I., Tateishi T. Investigation of growth unit of hydroxyapatite crystal from the measurement of step kinetics. J. Cryst. Growth 1996; 167: 773–776
  • Höhling H. J. Do conformities exist between the earliest crystal formations in enamel and those of the collagen-rich hard tissues?. Tooth Enamel V, R. W. Fearnhead, FlorenceJapan 1989; 322–334
  • Frank R. M., Nalbandian J. Ultrastructure of amelogenesis. Structural and Chemical Organization of Teeth, A. E.W. Miles. Academic Press, New York 1967; 339–462
  • Robinson C., Fuchs P., Weatherell J. A. The appearance of developing rat incisor enamel using freeze-fracturing technique. J. Cryst. Growth 1981; 53: 160–165
  • Fincham A. G., Moradian-Oldak J., Simmer J. P., Sarte P., Lau E. C., Diekwisch T., Slavkin H. C. Self-Assembly of a Recombinant Amelogenin Protein Generates Supramolecular Structures. J. Struct. Biol. 1994; 112: 103–109
  • Iijima M., Tohda H., Moriwaki Y. Growth and structure of lamellar mixed crystals of octacalcium phosphate and apatite in a model system of enamel formation. J. Cryst. Growth 1997; 116: 319–326
  • Bronckers A. L. J. J., Woltgens J. H. M. Short-term effects of fluoride on biosynthesis of enamel-matrix proteins and dentine collagens and on mineralisation during hamster tooth-germ development in organ culture. Archs. Oral Biol. 1985; 30: 181–191
  • Robinson C., Kirkham J. Effect of fluoride on developing enamel. J. Dent. Res. 1990; 69: 685–691
  • Den Besten P. K. Effects of fluoride on protein secretion and removal during enamel development in the rat. J. Dent. Res. 1986; 65: 1272
  • Den Besten P. K., Crenshaw M. A. The effects of chronic high fluoride levels on forming enamel in the rat. Archs. Oral Biol. 1984; 29: 675–679
  • Wright J. T. Hereditary defects of enamel. Dental Enamel: Formation to Destruction, C. Robinson, J. Kirkham, R. C. Shore. CRC Press Inc, Boca Raton 1995; 193–243
  • Robinson C., Kirkham J., Brookes S. J., Shore R. C. The role of albumin in developing rodent dental enamel: A possible explanation for white spot hypoplasia. J. Dent. Res. 1992; 71: 1270–1274
  • Gathercole L. J., Swan A. J., Price G., Dieppe P. Nanometre-scale surface features of arthropathic microcrystals and their relation to protein adsorption. A study by scanning probe microscopy and wide angle X-ray diffraction. J. Mat. Sci: Materials in Medicine 1996; 7: 511–516

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.