83
Views
22
CrossRef citations to date
0
Altmetric
Original Article

Identification of Tuftelin-and Amelogenin-Interacting Proteins Using the Yeast Two-Hybrid System

, &
Pages 257-267 | Accepted 18 Nov 1997, Published online: 07 Jul 2009

References

  • Slavkin H. C., Hu C. C., Sakakura Y., Diekwisch T., Chai Y., Mayo M., Bringas J. P., Simmer J., Mak G., Sasano Y., David S. Gene expression, signal transduction and tissue-specific biomineralization during mammalian tooth development. Crit. Rev. Eukaryotic Gene Expression 1992; 2: 315–329
  • Jowett A. K., Vainio S., Ferguson M. W. J., Sharpe P. T., Thesleff I. Epithelial-mesenchymal interactions are required for msx1 and msx2 gene expression in the developing murine molar tooth. Development 1993; 117: 461–470
  • Thesleff I., Vaahtokari A., Partanen A. M. Regulation of organogenesis. Common molecular mechanisms regulating the development of teeth and other organs. Int. J. Dev. Biol. 1995; 39: 35–50
  • Thesleff I., Vaahtokari A., Kettunen P., Aberg T. Epithelial-mesenchymal signaling during tooth development. Conn. Tissue Res. 1995; 32: 9–15
  • Eastoe J. E. The amino acid composition of proteins from the oral tissues. II. The matrix proteins in dentine and enamel from developing human decidiuous teeth. Arch. Oral Biol. 1963; 8: 633–652
  • Deutsch D. Structure and function of enamel gene products. Anat. Rec. 1989; 224: 189–210
  • Robinson C., Briggs H. D., Kirkham J., Atkinson P. J. Changes in the protein components of rat incisor enamel during tooth development. Arch. Oral Biol. 1983; 10: 993–1000
  • Moradian-Oldak J., Leung W., Simmer J. P., Zeichner-David M., Fincham A. G. Identification of a novel proteinase (ameloprotease-1) responsible for the complete degredation of amelogenin during enamel maturation. Biochem. J. 1996; 318: 1015–1021
  • Snead M. L., Zeichner-David M., Chandra T., Robson K. J., Woo S. L., Slavkin H. C. Construction and identification of mouse amelogenin cDNA clones. Proc. Natl. Acad. Sci. USA 1983; 80: 7254–7258
  • Termine J. D., Belcourt A. B., Christner P. J., Conn K. M., Nylen M. U. Properties of dissociatively extracted fetal tooth matrix proteins. J. Biol. Chem. 1980; 255: 9760–9768
  • Brookes S. J., Robinson C., Kirkham J., Bonass W. A. Biochemistry and molecular biology of amelogenin proteins of developing dental enamel. Archs. Oral Biol. 1995; 40: 1–14
  • Deutsch D., Palmon A., Dafni L., Catalano-Sherman J., Young M. F., Fisher L. W. The enamelin (tuftelin) gene. Int. J. Dev. Biol. 1995; 39: 135–143
  • Lau E. C., Simmer J. P., Bringas P., Jr., Hsu D. D., Hu C., Zeichner-David M., Thiemann F., Snead M. L., Slavkin H. C., Fincham A. G. Alternative splicing of the mouse amelogenin primary RNA transcript contributes to amelogenin heterogeneity. Biochem. Biophys. Res. Commun. 1992; 188: 1253–1260
  • Paine M. L., Snead M. L. Protein interactions during assembly of the enamel organic extracellular matrix. J. Bone Min. Res. 1997; 12: 221–227
  • Fincham A. G., Moradian-Oldak J., Diekwisch T. G. H., Lyaruu D. M., Wright J. T., Bringas P., Jr., Slavkin H. C. Evidence for amelogenin “nanospheres” as functional components of secretory-stage enamel matrix. J. Struct. Biol. 1995; 115: 50–59
  • Lau E. C., Mohandas T., Shapiro L. J., Slavkin H. C., Snead M. L. Human and mouse amelogenin gene loci are on the sex chromosome. Genomics 1989; 4: 162–168
  • Aldred M. J., Crawford P. J. M., Roberts E., Thomas N. S. T. Identification of a nonsense mutation in the amelogenin gene (AMELX) in a family with X-linked amelogenesis imperfecta (AIH1). Human Genetics 1992; 90: 413–416
  • Lyngstadaas S. P., Risnes S., Sproat B. S., Thrane P. S., Prydz H. P. A synthetic, chemically modified ribozyme eliminates amelogenin, the major translation product in developing mouse enamel in vivo. EMBO J. 1995; 14: 5224–5229
  • Deutsch D., Palmon A., Fisher L. W., Kolodny N., Termine J. D., Young M. F. Sequencing of bovine enamelin (“tuftelin”) a novel acidic enamel protein. J. Biol. Chem. 1991; 266: 16021–16028
  • Traub W., Jodaiken A., Weiner S. Diffraction studies of enamel protein-mineral structural relations. The Chemistry and Biology of Mineralized Tissues, W. T. Butler. Ebsco Media, Birmingham, Alabama 1984; 221–226
  • Deutsch D., Shapira L., Alayoff A., Leviel D., Yoeli Z., Arad A. Protein and mineral changes during prenatal and postnatal development and mineralization of human deciduous enamel. Tooth Enamel IV, R. W. Fearnhead, S. Suga. Elsevier Science Publishers, Amsterdam 1984; 234–239
  • Robinson C., Kirkham J. The dynamics of amelo-genesis as revealed by protein compositional studies. The Chemistry and Biology of Mineralized Tissue, W. T. Butler. Ebsco Media, Birmingham, Alabama 1985; 249–260
  • Slavkin H. C., Bessem C., Bringas P., Jr., Zeichner-David M., Nanci A., Snead M. L. Sequential expression and differential function of multiple enamel proteins during fetal neonatal and early postnatal stages of mouse molar organogenesis. Differentiation 1988; 37: 26–39
  • Krebsbach P. H., Lee S. K., Matsuki Y., Kozac C., Yamada K. M., Yamada Y. Full-length sequence, localization, and chromosome mapping of ameloblastin: a novel tooth-specific gene. J. Biol. Chem. 1996; 271: 4431–4435
  • Fong C. D., Slaby I., Hammarstrom L. Amelin, an enamel related protein, transcribed in cells of the epithelial root sheath. J. Bone Min. Res. 1996; 11: 892–898
  • Hu C.-C., Fukae M., Uchida T., Qian Q., Zhang C. H., Ryu O. H., Tanabe T., Yamakoshi Y., Murakami C., Dohi N., Shimizu M., Simmer P. J. Sheathlin: Cloning, cDNA/polypeptide sequences, and immunolocalization of porcine enamel sheath proteins. J. Dent. Res. 1997; 76: 648–657
  • Snead M. L. Enamel biology logodaedaly: Getting to the root of the problem, or “Who's on first…”. J. Bone Min. Res. 1996; 11: 899–904
  • MacDougall M., DuPont B. R., Simmons D., Reus B., Krebsbach P. H., Karman C., Holmgren G., Leach R. J., Forsman K. Ameloblastin gene (AMBN) maps within the critical autosomal dominant amelogenesis imperfecta region at chromosome 4q21. Genomics 1997; 41: 115–118
  • Slavkin H. C., Boyde A. Cementum: An epithelial secretory product?. J. Dent. Res. 1974; 53: 157, abs
  • Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature 1989; 340: 245–247
  • Kasper M., Karsten U., Stosiek P., Moll R. Distribution of intermediate-filament proteins in the human enamel organ: unusually complex pattern of coexpression of cytokeratin polypeptides and vimentin. Differentiation 1989; 40: 207–214
  • Lesot H., Meyer J. M., Ruch J. V., Weber K., Osborn M. Immunofluorescent localization of vimentin, prekeratin and actin during odontoblast and ameloblast differentiation. Differentiation 1982; 21: 133–137
  • Ramirez A., Bravo A., Jorcano J. L., Vidal M. Sequences 5′ of the bovine keratin 5 gene direct tissue-and cell-type-specific expression of a lacZ gene in the adult and during development. Differentiation 1994; 58: 53–64
  • Moradian-Oldak J., Simmer P. J., Sarte P. E., Zeichner-David M., Fincham A. G. Specific cleavage of a recombinant murine amelogenin at the carboxy-terminal region by a proteinase fraction isolated from developing bovine tooth enamel. Archs. Oral Biol. 1994; 39: 647–656
  • Deutsch D., Dafni L., Palmon A., Hekmati M., Young M. F., Fischer L. W. Tuftelin: enamel mineralization and amelogenesis imperfecta. Dental Enamel, D. J. Chadwick, G. Cardew. John Wiley & Sons, Inc., New York, New York 1997; 135–147
  • Robinson C., Brookes S. J., Bonass W. A., Shore R. C., Kirkham J. Enamel maturation. Dental Enamel, D. J. Chadwick, G. Cardew. John Wiley & Sons, Inc., New York, New York 1997; 156–170
  • Sambrook J., Fritsch E. F., Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, , N. Y. 1989
  • Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239: 487–491
  • Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc. Natl. Acad. Sci. USA 1987; 84: 4767–4771
  • Paine M. L., Deutsch D., Snead M. L. Carboxyl-region of tuftelin mediates self-assembly. Connect. Tissue Res. 1997; 35: 157–161
  • Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. Current Protocols in Molecular Biology. Wiley, New York 1990
  • Li B., Fields S. Identification of mutations in p53 that affects its binding to SV40 large T antigen by using the yeast two-hybrid system. FASEB J. 1993; 7: 957–963
  • Holmes D. S., Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 1981; 114: 193
  • Couwenhoven R. I., Snead M. L. Early determination and permissive expression of amelogenin transcription during mouse mandibular first molar development. Dev. Biol. 1994; 164: 290–299
  • Gasser D. L., Sternberg N. L., Pierce J. G., Goldner-Sauve A., Feng H., Haq A. K., Spies T., Hunt C., Buetow K. H., Chaplin D. D. P1 and cosmid clones define the organization of 280 kb of the mouse H-2 complex containing the Cps-1 and Hsp70 loci. Immunogenet. 1994; 39: 48–55
  • Banerji J., Sands J., Strominger J. L., Spies T. A gene pair from the human major histocompatibility complex encodes large proline-rich proteins with multiple repeated motifs and a single ubiquitin-like domain. Proc. Natl. Acad. Sci. 1990; 87: 2374–2378
  • Chirico W. J., Waters M. G., Blobel G. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 1988; 332: 805–810
  • Tyan M. L. Vitamin A-enhanced cleft palate susceptibility associated with H-2. Immunogenet. 1987; 14: 239–245
  • Peters B. H., Peters J.-M., Kuhn C., Zoller J., Franke W. W. Maintenance of cell-type specific cytoskeletal character in epithelial cells out of epithelial context: Cytokeratins and other cytoskeletal proteins in the rests of Malassez of the periodontal ligament. Differentiation 1995; 59: 113–126
  • Paine M. L., Gibbins J. R., Choi J. K. W., McDonald D. A., Manthey A. M., Walker D. M., Kefford R. F. Intranuclear post transcriptional down-regulation responsible for loss of a keratin differentiation marker in tumour progression. Anticancer Res. 1995; 15: 2145–2154
  • Rugg E. L., McLean W. H. I., Lane E. B., Pitera R., McMillan J. R., Dopping-Hepenstal P. J. C., Navsaria H. A., Leigh I. M., Eady R. A. J. A functional “knockout” of human keratin 14. Genes Dev. 1994; 8: 2563–2573
  • Munro C. S., Carter S., Bryce S., Hall M., Rees J. L., Kunkeler L., Stephenson A., Strachan T. A gene for pachyonychia congenita is closely linked to the keratin gene cluster on 17q12-q21. J. Med. Genet. 1994; 31: 675–678
  • White J. A., Guo Y. D., Baetz K., Beckett-Jones B., Bonasoro J., Hsu K. E., Dilworth F. J., Jones G., Petkovich M. Identification of the Retinoic Acid-All-trans-retinoic Acid 4-Hydroxilase. J. Biol. Chem. 1996; 271: 29922–29927
  • Huder J. B., Dimroth P. Sequence of the sodium ion pump methylmalonyl-CoA decarboxylase from Veillonella parvula. J. Biol. Chem. 1993; 268: 24564–24571
  • Kedra D., Peyrard M., Fransson I., Collins J. E., Dunham I., Roe B. A., Dumanski J. P. Characterization of a second human clathrin heavy chain polypeptide gene (CLH-22) from chromosome 22q11. Hum. Mol. Genet. 1996; 5: 625–631
  • Ignelzi M. A., Jr., Liu Y.-H., Maxson R. E., Jr., Snead M. L. Genetically engineered mice: Tools to understand craniofacial development. Crit. Rev. Oral Biol. Med. 1995; 6: 181–201

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.