1,939
Views
77
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Tumor-promoting functions of transforming growth factor-β in progression of cancer

, &
Pages 143-152 | Received 09 Sep 2011, Accepted 03 Nov 2011, Published online: 24 Nov 2011

References

  • Moses HL, Roberts AB. The discovery of TGF-β: a historical perspective. The TGF-β family. New York: Cold Spring Harbor Laboratory Press; 2009. p. 1–28.
  • Roberts AB, Wakefield LM. The two faces of transforming growth factor-β in carcinogenesis. Proc Natl Acad Sci USA. 2003;100:8621–3.
  • Ikushima H, Miyazono K. TGF-β signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10:415–24.
  • Sanchez-Capelo A. Dual role for TGF-β1 in apoptosis. Cytokine Growth Factor Rev. 2005;16:15–34.
  • Heldin CH, Miyazono K, ten Dijke P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–71.
  • Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem. 2010;147:35–51.
  • Koinuma D, Tsutsumi S, Kamimura N, Taniguchi H, Miyazawa K, Sunamura M, Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor β signaling. Mol Cell Biol. 2009;29:172–86.
  • Koinuma D, Tsutsumi S, Kamimura N, Imamura T, Aburatani H, Miyazono K. Promoter-wide analysis of Smad4 binding sites in human epithelial cells. Cancer Sci. 2009;100:2133–42.
  • Mizutani A, Koinuma D, Tsutsumi S, Kamimura N, Morikawa M, Suzuki HI, Cell type-specific target selection by combinatorial binding of Smad2/3 proteins and hepatocyte nuclear factor 4α in HepG2 cells. J Biol Chem. 2011;286:29848–60.
  • Kamiya Y, Miyazono K, Miyazawa K. Smad7 inhibits transforming growth factor-β family type I receptors through two distinct modes of interaction. J Biol Chem. 2010;285:30804–13.
  • Deheuninck J, Luo K. Ski and SnoN, potent negative regulators of TGF-β signaling. Cell Res. 2009;19:47–57.
  • Moustakas A, Heldin CH. Non-Smad TGF-β signals. J Cell Sci. 2005;118:3573–84.
  • Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 2007;26:3957–67.
  • Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.
  • Sabe H. Cancer early dissemination: cancerous epithelial-mesenchymal transdifferentiation and transforming growth factor-β signalling. J Biochem. 2011;149:633–9.
  • Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119:1429–37.
  • Miyazono K. Transforming growth factor-β signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85:314–23.
  • Shirakihara T, Horiguchi K, Miyazawa K, Ehata S, Shibata T, Morita I, TGF-β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J. 2011;30:783–95.
  • Itoh N, Ornitz DM. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem. 2011;149:121–30.
  • Horiguchi K, Sakamoto K, Koinuma D, Semba K, Inoue A, Inoue S, TGF-β drives epithelial-mesenchymal transition through δEF1-mediated downregulation of ESRP. Oncogene. 2011 Oct 31 (Epub ahead of print).
  • Warzecha CC, Jiang P, Amirikian K, Dittmar KA, Lu H, Shen S, An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J. 2010;29:3286–30.
  • Horiguchi K, Shirakihara T, Nakano A, Imamura T, Miyazono K, Saitoh M. Role of Ras signaling in the induction of snail by transforming growth factor-β. J Biol Chem. 2009;284:245–53.
  • Matsuzaki K. Smad phosphoisoform signals in acute and chronic liver injury: similarities and differences between epithelial and mesenchymal cells. Cell Tissue Res. 2011 May 31 (Epub ahead of print).
  • Minoo P, Su G, Drum H, Bringas P, Kimura S. Defects in tracheoesophageal and lung morphogenesis in Nkx2.1-/- mouse embryos. Dev Biol. 1999;209:60–71.
  • Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, Characterizing the cancer genome in lung adenocarcinoma. Nature. 2007;450:893–8.
  • Winslow MM, Dayton TL, Verhaak RG, Kim-Kiselak C, Snyder EL, Feldser DM, Suppression of lung adenocarcinoma progression by Nkx2-1. Nature. 2011;473:101–4.
  • Saito RA, Watabe T, Horiguchi K, Kohyama T, Saitoh M, Nagase T, Thyroid transcription factor-1 inhibits transforming growth factor-β-mediated epithelial-to-mesenchymal transition in lung adenocarcinoma cells. Cancer Res. 2009;69:2783–91.
  • Minoo P, Hu L, Zhu N, Borok Z, Bellusci S, Groffen J, SMAD3 prevents binding of NKX2.1 and FOXA1 to the SpB promoter through its MH1 and MH2 domains. Nucleic Acids Res. 2008;36:179–88.
  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3:537–49.
  • Komuro A, Yashiro M, Iwata C, Morishita Y, Johansson E, Matsumoto Y, Diffuse-type gastric carcinoma: progression, angiogenesis, and transforming growth factor β signaling. J Natl Cancer Inst. 2009;101:592–604.
  • Johansson E, Komuro A, Iwata C, Hagiwara A, Fuse Y, Watanabe A, Exogenous introduction of tissue inhibitor of metalloproteinase 2 reduces accelerated growth of TGF-β-disrupted diffuse-type gastric carcinoma. Cancer Sci. 2010;101:2398–403.
  • Watabe T, Nishihara A, Mishima K, Yamashita J, Shimizu K, Miyazawa K, TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial cells. J Cell Biol. 2003;163:1303–11.
  • Kokudo T, Suzuki Y, Yoshimatsu Y, Yamazaki T, Watabe T, Miyazono K. Snail is required for TGF-β-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells. J Cell Sci. 2008;121:3317–24.
  • Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133:66–77.
  • Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J, Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J Clin Invest. 2002;109:1607–15.
  • Yoshimura A, Wakabayashi Y, Mori T. Cellular and molecular basis for the regulation of inflammation by TGF-β. J Biochem. 2010;147:781–92.
  • Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P. The polarization of immune cells in the tumour environment by TGF-β. Nat Rev Immunol. 2010;10:554–67.
  • Nam JS, Terabe M, Mamura M, Kang MJ, Chae H, Stuelten C, An anti-transforming growth factor-β antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Res. 2008;68:3835–43.
  • Azuma H, Ehata S, Miyazaki H, Watabe T, Maruyama O, Imamura T, Effect of Smad7 expression on metastasis of mouse mammary carcinoma JygMC(A) cells. J Natl Cancer Inst. 2005;97:1734–46.
  • Ehata S, Hanyu A, Hayashi M, Aburatani H, Kato Y, Fujime M, Transforming growth factor-β promotes survival of mammary carcinoma cells through induction of antiapoptotic transcription factor DEC1. Cancer Res. 2007;67:9694–703.
  • Li Y, Xie M, Yang J, Yang D, Deng R, Wan Y, The expression of antiapoptotic protein survivin is transcriptionally upregulated by DEC1 primarily through multiple Sp1 binding sites in the proximal promoter. Oncogene. 2006;25:3296–306.
  • Hoshino Y, Katsuno Y, Ehata S, Miyazono K. Autocrine TGF-β protects breast cancer cells from apoptosis through reduction of BH3-only protein, Bim. J Biochem. 2011;149:55–65.
  • Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest. 1999;103:197–206.
  • Deckers M, van Dinther M, Buijs J, Que I, Lowik C, van der Pluijm G, The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res. 2006;66:2202–9.
  • Ehata S, Hanyu A, Fujime M, Katsuno Y, Fukunaga E, Goto K, Ki26894, a novel transforming growth factor-β type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci. 2007;98:127–33.
  • Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K. Autocrine TGF-β signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell. 2009;5:504–14.
  • Penuelas S, Anido J, Prieto-Sanchez RM, Folch G, Barba I, Cuartas I, TGF-β increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell. 2009;15:315–27.
  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.
  • Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y, TGF-β-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature. 2010;463:676–80.
  • Ferletta M, Caglayan D, Mokvist L, Jiang Y, Kastemar M, Uhrbom L, Forced expression of Sox21 inhibits Sox2 and induces apoptosis in human glioma cells. Int J Cancer. 2011;129:45–60.
  • Anido J, Saez-Borderias A, Gonzalez-Junca A, Rodon L, Folch G, Carmona MA, TGF-β receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell. 2010;18:655–68.
  • Ehata S, Johansson E, Katayama R, Koike S, Watanabe A, Hoshino Y, Transforming growth factor-β decreases the cancer-initiating cell population within diffuse-type gastric carcinoma cells. Oncogene. 2011;30:1693–705.
  • Tang B, Yoo N, Vu M, Mamura M, Nam JS, Ooshima A, Transforming growth factor-β can suppress tumorigenesis through effects on the putative cancer stem or early progenitor cell and committed progeny in a breast cancer xenograft model. Cancer Res. 2007;67:8643–52.
  • Morikawa M, Koinuma D, Tsutsumi S, Vasilaki E, Kanki Y, Heldin CH, ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif. Nucleic Acids Res. 2011;39:8712–27.