2,431
Views
54
CrossRef citations to date
0
Altmetric
Review Article

Antimicrobial peptides

Pages 199-204 | Received 02 Jan 2014, Accepted 25 Feb 2014, Published online: 23 Apr 2014

References

  • Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Micro. 2005;3:238–50.
  • Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol. 2012;32:143–71.
  • Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24:1551–7.
  • Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers. 2002;66:236–48.
  • Melo MN, Ferre R, Castanho RMA. Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Micro. 2009;7:245–50.
  • Pokorny A, Almeida PFF. Kinetics of dye efflux and lipid flip-flop induced by d-lysin in phospholipid vesicles and the mechanism of graded release by amphipathic a-helical peptides. Biochemistry. 2004;43:8846–57.
  • Mecke A, Lee DK, Ramamoorthy A, Orr BG, Banaszak Holl MM. Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers. Biophys J. 2005;89:4043–50.
  • El Jastimi R, Lafleur M. Nisin promotes the formation of non-lamellar inverted phases in unsaturated phosphatidylethanolamines. Biochim Biophys Acta. 1999;1418:97–105.
  • Boesze-Battaglia K, Schimmel RJ. Cell membrane lipid composition and distribution: implications for cell function and lessons learned from photoreceptors and platelets. J Exp Biol. 1997;200:2927–36.
  • Lugtenberg EJJ, Peters R. Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12. Biochim Biophys Acta. 1976;441:38–47.
  • Haest CW, de Gier J, den Kamp JA, Bartels P, van Deenen LL. Changes in permeability of Staphylococcus aureus and derived liposomes with varying lipid composition. Biochim Biophys Acta. 1972;255:720–33.
  • Ringstad L, Schmidtchen A, Malmsten M. Effect of peptide length on the interaction between consensus peptides and DOPC/DOPA bilayers. Langmuir. 2006;22:5042–50.
  • Deslouches B, Phadke SM, Lazarevic V, Cascio M, Islam K, Montelaro RC, et al. De novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity. Antimicrob Agents Chemother. 2005;49:316–22.
  • Sigurdadottir T, Andersson P, Davoudi M, Malmsten M, Schmidtchen A, Bodelsson M. In silico identification and biological evaluation of antimicrobial peptides based on human cathelicidin LL-37. Antimicrob Agents Chemother. 2006;50:2983–9.
  • Ringstad L, Andersson Nordahl E, Schmidtchen A, Malmsten M. Composition effect on peptide interaction with lipids and bacteria: variants of C3a peptide CNY21. Biophys J. 2007;92:87–98.
  • Strömstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother. 2009;53:593–602.
  • Ringstad L, Protopapa E, Lindholm-Sethson B, Schmidtchen A, Nelson A, Malmsten M. An electrochemical study into the interaction between complement-derived peptides and DOPC mono- and bilayers. Langmuir. 2008;24:208–16.
  • Cornut I, Büttner K, Dasseaux JL, Dufourcq J. The amphipathic a-helix concept: application to the de novo design of ideally amphipathic Leu, Lys peptides with hemolytic activity higher than melittin. FEBS Letts. 1994;349:29–33.
  • Jerala R. Synthetic lipopeptides: a novel class of anti-infectives. Expert Opin Investig Drugs. 2007;16:1159–69.
  • Avrahami D, Shai Y. Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Biochemistry. 2002;41:2254–63.
  • Eeman M, Francius G, Dufren YF, Nott K, Paquot M, Deleu M. Effect of cholesterol and fatty acids on the molecular interactions of fengycin with stratum corneum mimicking lipid monolayers. Langmuir. 2009;25:3029–39.
  • Schmidtchen A, Pasupuleti M, Mörgelin M, Davoudi M, Alenfall J, Chalupka A, et al. Boosting antimicrobial peptides by hydrophobic oligopeptide end-tags. J Biol Chem. 2009;284:17584–94.
  • Schmidtchen A, Ringstad L, Kasetty G, Mizuno H, Rutland MW, Malmsten M. Membrane selectivity by W-tagging of antimicrobial peptides. Biochim Biophys Acta. 2011;1808:1081–91.
  • Malmsten M, Kasetty G, Pasupuleti M, Alenfall J, Schmidtchen A. Highly selective end-tagged antimicrobial peptides derived from PRELP. PLoS One. 2011;6:e16400.
  • Mouritsen OG, Zuckermann MJ. What's so special about cholesterol? Lipids. 2004;39:1101–13.
  • Pasupuleti M, Schmidtchen A, Chalupka A, Ringstad L, Malmsten M. End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing. PLoS One. 2009;4:e5285.
  • Nizet V. Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr Issues Mol Biol. 2006;8:11–26.
  • Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med. 2001;193:1067–76.
  • Giuliani A, Pirri G, Nicoletto SF. Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol. 2007;2:1–33.
  • Pranting M, Negrea A, Rhen M, Andersson DI. Mechanism and fitness costs of PR-39 resistance in Salmonella enterica serovar Typhimurium LT2. Antimicrob Agents Chemother. 2008;52:2734–41.
  • Pranting M, Andersson DI. Mechanisms and physiological effects of protamine resistance in Salmonella enterica serovar Typhimurium LT2. J Antimicrob Chemother. 2010;65:876–87.
  • Lofton H, Pränting M, Thulin E, Andersson DI. Mechanism and fitness costs of resistance to antimicrobial peptides LL-37, CNY100HL and wheat germ histones. PLoS One. 2013;8:e68875.