769
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Syntheses of new tuberculosis inhibitors promoted by microwave irradiation

, , &
Pages 181-191 | Received 01 Jan 2014, Accepted 25 Feb 2014, Published online: 26 Mar 2014

References

  • Koch R. Die Ätiologie der Tuberkulose. Berliner Klinischen Wochenschrift. 1882;19:221–30.
  • Koch R. The etiology of tuberculosis. Rev Infect Dis. 1982;4:1270–4.
  • Daniel TM. The history of tuberculosis. Respir Med. 2006;100:1862–70.
  • Harries AD, Dye C. Tuberculosis. Ann Trop Med Parasit. 2006;100:415–31.
  • Verma I, Grover A. Antituberculous vaccine development: a perspective for the endemic world. Expert Rev Vaccines. 2009;8:1547–53.
  • Tuberculosis control and research strategy for the 1990s. World Health Organization: Geneva, 26–27 October, 1991.
  • Palomino JC, Martin A. TMC207 becomes bedaquiline, a new anti-TB drug. Future Microbiol. 2013;8:1071–80.
  • World Health Organization. Global tuberculosis control: a short update to the 2009 report. Geneva: World Health Organization; 2009.
  • Dye C, Lonnroth K, Jaramillo E, Williams BG, Raviglione M. Trends in tuberculosis incidence and their determinants in 134 countries. Bull World Health Organ. 2009;87:683–91.
  • Ax A, Schaal W, Vrang L, Samuelsson B, Hallberg A, Karlén A. Cyclic sulfamide HIV-1 protease inhibitors, with sidechains spanning from P2/P2′ to P1/P1′. Bioorg Med Chem. 2005;13:755–64.
  • Bacaer N, Ouifki R, Pretorius C, Wood R, Williams B. Modeling the joint epidemics of TB and HIV in a South African township. J Math Biol. 2008;57:557–93.
  • Global tuberculosis report. Geneva: World Health Organization: 2013.
  • Aubry A, Fisher LM, Jarlier V, Cambau E. First functional characterization of a singly expressed bacterial type II topoisomerase: the enzyme from Mycobacterium tuberculosis. Biochem Biophys Res Commun. 2006;348:158–65.
  • Johnsson K, King DS, Schultz PG. Studies on the mechanism of action of isoniazid and ethionamide in the chemotherapy of tuberculosis. J Am Chem Soc. 1995;117:5009–10.
  • Shakil S, Khan R, Zarrilli R, Khan AU. Aminoglycosides versus bacteria: a description of the action, resistance mechanism, and nosocomial battleground. J Biomed Sci. 2008;15:5–14.
  • Kappe CO. Microwave dielectric heating in synthetic organic chemistry. Chem Soc Rev. 2008;37:1127–39.
  • Nilsson P, Gold H, Larhed M, Hallberg A. Microwave-assisted enantioselective Heck reactions: expediting high reaction speed and preparative convenience. Synthesis. 2002;11:1611–14.
  • Noteberg D, Schaal W, Hamelink E, Vrang L, Larhed M. High-speed optimization of inhibitors of the malarial proteases plasmepsin I and II. J Comb Chem. 2003;5:456–64.
  • Wannberg J, Ersmark K, Larhed M. Microwave-accelerated synthesis of protease inhibitors. Top Curr Chem. 2006;266:167–98.
  • Gising J, Odell LR, Larhed M. Microwave-assisted synthesis of small molecules targeting the infectious diseases tuberculosis, HIV/AIDS, malaria and hepatitis C. Org Biomol Chem. 2012;10:2713–29.
  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:537–44.
  • Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, et al. The complete genome sequence of Escherichia coli K-12. Science. 1997;277:1453–62.
  • Kale GM, Raichurkar A, Hameed SP, Waterson D, McKinney D, Manjunatha MR, et al. Thiazolopyridine ureas as novel antitubercular agents acting through inhibition of DNA gyrase B. J Med Chem. 2013;56:8834–48.
  • Larhed M, Hallberg A. Microwave-promoted palladium-catalyzed coupling reactions. J Org Chem. 1996;61:9582–4.
  • Wu X, Ohrngren P, Joshi AA, Trejos A, Persson M, Arvela RK, et al. Synthesis, X-ray analysis, and biological evaluation of a new class of stereopure lactam-based HIV-1 protease inhibitors. J Med Chem. 2012;55:2724–36.
  • Guerrini V, De Rosa M, Pasquini S, Mugnaini C, Brizzi A, Cuppone AM, et al. New fluoroquinolones active against fluoroquinolones-resistant Mycobacterium tuberculosis strains. Tuberculosis. 2013;93:405–11.
  • Onajole OK, Pieroni M, Tipparaju SK, Lun S, Stec J, Chen G, et al. Preliminary structure-activity relationships and biological evaluation of novel antitubercular indolecarboxamide derivatives against drug-susceptible and drug-resistant Mycobacterium tuberculosis strains. J Med Chem. 2013;56:4093–103.
  • Shirude PS, Madhavapeddi P, Tucker JA, Murugan K, Patil V, Basavarajappa H, et al. Aminopyrazinamides: novel and specific gyrB inhibitors that kill replicating and nonreplicating Mycobacterium tuberculosis. ACS Chem Biol. 2013;8:519–23.
  • Harth G, Clemens DL, Horwitz MA. Glutamine-synthetase of Mycobacterium tuberculosis: extracellular release and characterization of its enzymatic activity. Proc Natl Acad Sci USA. 1994;91:9342–6.
  • Clemens DL, Horwitz MA. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med. 1995;181:257–70.
  • Gordon AH, Darcyhart P, Young MR. Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature. 1980;286:79–80.
  • Harth G, Horwitz MA. An inhibitor of exported Mycobacterium tuberculosis glutamine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins as potential novel drug targets. J Exp Med. 1999;189:1425–35.
  • Harth G, Horwitz MA. Inhibition of Mycobacterium tuberculosis glutamine synthetase as a novel antibiotic strategy against tuberculosis: demonstration of efficacy in vivo. Infect Immun. 2003;71:2297–8.
  • Gising J, Nilsson MT, Odell LR, Yahiaoui S, Lindh M, Iyer H, et al. Trisubstituted imidazoles as Mycobacterium tuberculosis glutamine synthetase inhibitors. J Med Chem. 2012;55:2894–8.
  • Odell LR, Russo F, Larhed M. Molybdenum hexacarbonyl mediated CO gas-free carbonylative reactions. Synlett. 2012;23:685–98.
  • Nordqvist A, Nilsson MT, Lagerlunda O, Muthas D, Gising J, Yahiaoui S, et al. Synthesis, biological evaluation and X-ray crystallographic studies of imidazo[1,2-a]pyridine-based Mycobacterium tuberculosis glutamine synthetase inhibitors. Medchemcomm. 2012;3:620–6.
  • Odell LR, Nilsson MT, Gising J, Lagerlund O, Muthas D, Nordqvist A, et al. Functionalized 3-amino-imidazo[1,2-a]pyridines: a novel class of drug-like Mycobacterium tuberculosis glutamine synthetase inhibitors. Bioorg Med Chem Lett. 2009;19:4790–3.
  • Jose GS, Jackson ER, Uh E, Johny C, Haymond A, Lundberg L, et al. Design of potential bisubstrate inhibitors against Mycobacterium tuberculosis (Mtb) 1-deoxy-D-xylulose 5-phosphate reductoisomerase (Dxr)-evidence of a novel binding mode. Medchemcomm. 2013;4:1099–104.
  • Andaloussi M, Henriksson LM, Wieckowska A, Lindh M, Björkelid C, Larsson AM, et al. Design, synthesis, and X-ray crystallographic studies of α-aryl substituted fosmidomycin analogues as inhibitors of Mycobacterium tuberculosis 1-deoxy-d-xylulose 5-phosphate reductoisomerase. J Med Chem. 2011;54:4964–76.
  • Nordqvist A, Bjorkelid C, Andaloussi M, Jansson AM, Mowbray SL, Karlen A, et al. Synthesis of functionalized cinnamaldehyde derivatives by an oxidative Heck reaction and their use as starting materials for preparation of Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate reductoisomerase inhibitors. J Org Chem. 2011;76:8986–98.
  • Zhou Y, Beeler AB, Cho SY, Wang YH, Franzblau SG, Snyder JK. Library synthesis using 5,6,7,8-tetrahydro-1,6-naphthyridines as scaffolds. J Comb Chem. 2008;10:534–40.
  • Lin G, Li DY, de Carvalho LPS, Deng HT, Tao H, Vogt G, et al. Inhibitors selective for mycobacterial versus human proteasomes. Nature. 2009;461:621–63.
  • Ohrngren P, Fardost A, Russo F, Schanche JS, Fagrell M, Larhed M. Evaluation of a nonresonant microwave applicator for continuous-flow chemistry applications. Org Process Res Dev. 2012;16:1053–63.
  • Biava M, Porretta GC, Poce G, De Logu A, Saddi M, Meleddu R, et al. 1,5-Diphenylpyrrole derivatives as antimycobacterial agents. Probing the influence on antimycobacterial activity of lipophilic substituents at the phenyl rings. J Med Chem. 2008;51:3644–8.
  • Biava M, Porretta GC, Poce G, De Logu A, Meleddu R, De Rossi E, et al. 1,5-Diaryl-2-ethyl pyrrole derivatives as antimycobacterial agents: design, synthesis, and microbiological evaluation. Eur J Med Chem. 2009;44:4734–8.
  • Manna K, Agrawal YK. Design, synthesis, and antitubercular evaluation of novel series of 3-benzofuran-5-aryl-1-pyrazolyl-pyridylmethanone and 3-benzofuran-5-aryl-1-pyrazolylcarbony1-4-oxo-naphthyridin analogs. Eur J Med Chem. 2010;45:3831–9.
  • Alvey L, Prado S, Saint-Joanis B, Michel S, Koch M, Cole SI, et al. Diversity-oriented synthesis of furo[3,2-f]chromanes with antimycobacterial activity. Eur J Med Chem. 2009;44:2497–505.
  • Kim P, Kang S, Boshoff HI, Jiricek J, Collins M, Singh R, et al. Structure-activity relationships of antitubercular nitroimidazoles. 2. Determinants of aerobic activity and quantitative structure-activity relationships. J Med Chem. 2009;52:1329–44.