4,935
Views
13
CrossRef citations to date
0
Altmetric
Review Article

Carbon Dioxide Formation and Elimination in Man

Recent theories and possible consequences

Pages 35-68 | Published online: 18 Jan 2010

References

  • Rahn H. Why are pH of 7.4 and PCO2 of 40 normal values for man?. Bull Eur Physiopathol Respir 1976; 12.5–13
  • Rahn H. Body temperature and acid-base regulation. Pneumologie 1974; 151: 87–94
  • Sahlin K. Intracellular pH and energy metabolism in the skeletal mucle of man.: With special reference to exercise. Acta Physiol Scand 1978; 1–56, suppl 455
  • Davies B. D. The importance of being ionized. Arch Biochem Biophys 1958; 78: 497–509
  • Christensen H. N. General concepts of neutrality regulation. Am J Surg 1962; 103: 286–288
  • Kashiwagura T., Deutsch C. J., Taylor J., Erecinska M., Wilson D. F. Dependence of glucuneogenesis, urea synthesis, and energy metabolism of hepatocytes on intracellular pH. J Biol Chem 1984; 259: 237–243
  • Somero G. N., White F. N. Enzymatic consequences under alphastat regulation. Acid-base regulation and body temperature, H Rahn, O Prakash. Martinus Nijhoff Publishers, Dordrecht 1985; 55–81
  • Rahn H., Howell B. J. The OH-/H+ concept of acid base balance. Historical development. Respir Physiol 1978; 33: 91–97
  • Rahn H., Reeves R. B., Howell B. J. Hydrogen ion regulation, temperature and evolution. Am Rev Respir Dis 1975; 112: 165–172
  • Rahn H., Reeves R. B. Hydrogen ion regulation during hypothermia, from the Amazon to the operating room. Applied physiology in clinical respiratory care, O Prakash. Martinus Nijhoff Publishers, The Hague 1982; 1–15
  • Rahn H. Introduction. Acid-base regulation and body temperature, H Rahn, O Prakash. Martinus Nijhoff Publishers, Dordrecht 1985; 1–13
  • Tønnesen T. I. Regulation of cytosolic pH in mammalian cells. Academic Thesis, The Norwegian Cancer Society, Oslo 1990; 1–53
  • Atkinson D. E., Camien M. N. The role of urea synthesis in the removal of metabolic bicarbonate and the regulation of pH. Curr Top Cell Regul 1982; 21: 261–302
  • Jungas R. L., Halperin M. L., Brosnan J. T. Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol Rev 1992; 72: 419–448
  • Halperin M. L., Kamel K. S., Ethier J. H., Stinebaugh B. J., Jungas R. L. Biochemistry and physiology of ammonium excretion. The kidney, physiology and pathophysiology. 2nd ed, D W Seldin, G Giebisch. Raven Press, New York 1992; 2645–2679
  • Walzer M. Roles of urea production, ammonium excretion, and amino acid oxidation in acid-base balance. Am J Physiol 1986; 250: F181–F188, (Renal Fluid Electrolyte Physiol 19)
  • Bourke E., Atkinson D. E. The development of acid-base concepts and their application to mammalian pH homeostasis. PH homeostasis, mechanisms and control, D Häussinger. Academic Press Ltd, London 1988; 163–179
  • Nunn J. F. Carbon dioxide. Applied respiratory physiology: Fourth ed. Butter-worth Heinemann Ltd, Oxford 1993; 219–246
  • Staub N. C. Basic respiratory physiology. Churchill Livingstone, New York 1991
  • Siggaard-Andersen O., Engel K. A new acid-base nomogram. An improved method for the calculation of the relevant acid-base data. Scand J Clin Lab Invest 1960; 12: 177–186
  • Astrup P., Siggaard-Andersen O., Jørgensen K., Engel K. The acid base metabolism. A new approch. Lancet 1960; I: 1035–1039
  • Siggaard-Andersen O. The acid-base status of the blood. Scand J Clin Lab Invest 1963; 15(Suppl 70)1–134
  • Siggaard-Andersen O., Wiberly P. D., Fogh-Andersen N., Gøthgen I. H. Measured and derived quantities with modern pH and blood gas equipment: calculation algorithms with 54 eqations. Scand J Clin Lab Invest 1988; 48(Suppl 189)7–15
  • Maren T. H. Carbonic anhydrase: chemistry, physiology and inhibition. Physiol Rev 1967; 47: 595–781
  • Cohen N. S., Kyan F. S., Kyan S. S., Cheung C-W., Raijman L. The apparent Km of ammonia for carbamoyl phosphate synthetase (ammonia) in situ. Biochem J 1985; 229: 205–211
  • Häussinger D., Meijer A. J., Gerok W., Sies H. Hepatic nitrogen metabolism and acid-base homeostasis. PH homeostasis, mechanisms and control, D Häussinger. Academic Press Ltd, London 1988; 337–377
  • Newsholme E. A, Leech A. R. Metabolism of ammonia. Biochemistry for the medical sciences. John Wiley & Sons Chicester. 1986; 481–508
  • Walser M., Bodenlos L. J. Urea metabolism in man. J Clin Invest 1959; 38: 1617–1626
  • Summerskill W. H. J., Wolpert E. Ammonia metabolism in the gut. Am J Clin Nutr, 170: 23, 633–639
  • Atkinson D. E., Bourke E. The role of ureagenesis in pH homeostasis. TIBS July, 1984; 291–302
  • Wheeler R. A., Jackson A. A., Griffiths D. M. Urea production and recycling in neonates. J Pediatr Surg 1991; 26: 575–577
  • Wheeler R. A., Griffiths D. M., Jackson A. A. Urea kinetics in neonates receiving total parenteral nutrition. Arch Dis Child 1993; 69(1)24–27
  • Karlsson T., Stjernström H., Jorfeldt L., Hillered L., Wiklund L. Turn-over of energy substrates in the splanchnic region of pigs during hypocapnic hyperventilation and during metabolic alkalosis, Submitted for publication
  • Weber F. L., Jr., Banwell J. G., Fresard K. M., Cummings J. H. Nitrogen in fecal bacterial, fiber, and soluable fractions of patients with cirrhosis: Effects of lactulose and lactulose and neomycin. J Lab Clin Med 1987; 110: 259–263
  • Farhi L. E., Rahn H. Gas stores of body and unsteady state. J Appl Physiol 1955; 7: 472–484
  • Farhi L. E., Rahn H. Dynamics of changes in carbon dioxide stores. Anesthesiology 1960; 21: 604–614
  • Teorell T. Kinetics of distribution of substances administered to the body. I. The extravascular modes of administration and II The extravascular modes of administration. Archives Internationales de Pharmacodynamie et de Therapie 1937; 57: 205–225; 226–240
  • Enghoff H. Zur Frage des schädlichen Raumes bei der Atmung. Skand Arch Physiol 1931; 63: 15–74
  • Enghoff H. Volumen inefficax. Bemerkungen zur Frage des schädlichen Raumes. Upsala Läkarfórenings fórhandlingar 1938; 44: 191–218
  • Nunn J. F., Holmdahl M. H:son. Henrik Enghoff and the volumen inefficax. Acta Anaesthesiol Scand 1990; 24–26, Suppl 34
  • Henneberg S., Söderberg D, Groth T., Stjernström H., Wiklund L. Carbon dioxide production during mechanical ventilation. Crit Care Med 1987; 15: 8–13
  • Alpern R. J., Stone D. K., Rector F. C., Jr. Renal acidification mechanisms. The kidney. 4th Eds, B M Brenner, F C Rector, Jr. WB Saunders Comp, Philadelphia 1991; 318–379
  • Halperin M. L., Jungas R. L. Metabolic production and renal disposal of hydrogen ions. Kidney Int 1983; 24: 709–713
  • Newsholme E. A., Leech A. R. Amino acid metabolism. Biochemistry for the medical sciences. John Wiley & Sons, Chicester 1986; 382–441
  • Welbourne T. C. Interorgan glutamine fluxes in acid-base disturbancies. PH homeostasis, mechanisms and control, D Häussinger. Academic Press Ltd, London 1988; 379–401
  • Milner A. D. Recent theories on the cause of cot death. Brit Med J 1987; 295: 1366–1368
  • Hoffman H. J., Hillman L. S. Epidemiology of the sudden infant death syndrome: Maternal, neonatal, and postneonatal risk factors. Clin Perinatol 1992; 19: 717–737
  • Hunt C. E. The cardiorespiratory control hypothesis for sudden infant death syndrome. Clin Perinatol 1992; 19: 757–771
  • Meny R. G., Carroll J. L., Carbone M. T., Kelly D. H. Cardiorespiratory recordings from infants dying suddenly and unexpectedly at home. Pediatrics 1994; 93: 44–49
  • Ponsonby A-L, Dwyer T., Gibbons L. E., Cochrane J. A., Wang Y-G. Factors potentiating the risk of sudden infant death syndrome associated with the prone position. N Engl J Med 1993; 329: 377–382
  • Kahn A., Groswasser J., Rebuffat E., Sottiaux M., Blum D., Foerster M., Franco P., Bochner A., Alexander M., Bachy A., Richard P., Verghote M., Polain L. E., Wayenberg L. Sleep and cardiorespiratory characteristics of infant victims of sudden death: A prospective case-control study. Sleep 1992; 15: 287–292
  • Schechtman V. L., Harper R. M., Wilson A. J., Southall D. P. Sleep state organization in normal infants and victims of the sudden infant death sydrome. Pediatrics 1992; 89: 865–870
  • Jacobi M. S., Gershan W. M., Thach B. T. Mechanism of failure of recovery from hypoxic apnoea by gasping in 17- to 23-day-old mice. J Appl Physiol 1991; 71: 1098–1105
  • Macy G. Composition of human colostrum and milk. Am J Dis Child 1949; 78: 589–595
  • Hambræus L., Lönnerdal B., Forsum E., Gebre-Medhin M. Nitrogen and protein components of human milk. Acta Pædiatr Scand 1978; 67: 561–565
  • Heine W., Grütte F., Wutzke K., Stolpe H. J., Thiess M., Müller W. Harnstoff als Substrat für die Darmflora des Säuglings. Monatsschr Kinderheilkd 1982; 130: 284–286
  • Heine W., Tiess M., Stolpe H. J., Wutzke K. D. Urea utilization by the intestinal flora of infants fed mother's milk and a formula diet, as measured with the 15N-tracer technique. J Pediatr Gastroenterol Nutr 1984; 3: 709–712
  • Vince A., Dawson A. M., Park N., O'Grady F. Ammonia production by intestinal bacteria. Gut 1973; 14: 171–177
  • Gibson J. A., Park N. J., Sladen G. E., Dawson A. M. The role of the colon in urea metabolism in man. Clin Sci Mol Med 1976; 50: 51–59
  • Wolpert E., Phillips S. F., Summerskil W. H. J. Transport of urea and ammonia production in the human colon. Lancet 1971; 11: 1387–1390
  • Gibbons R. J., Doetsch R. N. Physiological study of an obligatory anaerobic ureolytic bacterium. J Bacteriol 1959; 77: 417–428
  • Suzuki K., Benno Y., Mitsuoka T., Takebe S., Kobashi K., Hase J. Urease-producing species of intestinal anaerobes and their activities. Appl Environment Micobiol 1979; 37: 379–382
  • Fomon S. J., Mattews D. E., Bier D. M., Rogers R. R., Rebouche C. J., Edwards B. B., Nelson S. E. Bioavailability of dietary urea nitrogen in the infant. J Pediatr 1987; 111: 221–224
  • Fomon S. J., Bier D. M., Mattews D. E., Rogers R. R., Edwards B. B., Ziegler E. E., Nelson S. E. Bioavailability of dietary urea nitrogen in the breast-fed infant. J Pediatr 1988; 113: 515–517
  • Donovan S. M., Lönnerdal B., Atkinson S. A. Bioavailability of urea nitrogen for the low birthweight infant. Acta pædiatr Scand 1990; 79: 899–905
  • Hambraeus L. Proprietary milk versus human breast milk in infant feeding. A critical appraisal from the nutritional point of view. Pediatr Clin North Am 1977; 24: 17–36
  • Harzer G., Franzke V., Bindels J. G. Human milk non-protein nitrogen components: changing patterns of free amino acids and urea in the course of early lactation. Am J Clin Nutr 1984; 40: 303–309
  • Blumenfeld T. A., Mantell C. H., Catherman R. L., Blanc W. A. Postmortem vitrous humor chemistry in sudden infant death syndrome and other causes of death in childhood. Am J Clin Pathol 1979; 71: 219–223
  • Boehm G., Gedlu E., Müller M. D., Beyreiss K., Räihä N. C. R. Relationship between urea and ammonium excretion in the urine of very-low-birth-weight infants appropriate for gestional age. Biomed Biochim Acta 1990; 49: 69–74
  • Boehm G., Gedlu E., Müller M. D., Beyreiss K., Räihä N. C. R. Postnatal development of urea- and ammonia-excretion in the urine of very-low-birth-weight infants small for gestational age. Acta Pædiatr Hung 1991; 31: 31–45
  • Boehm G., Teichmann B., Jung K. Development of urea-synthesizing capacity in preterm infants during the first weeks of life. Biol Neonate 1991; 59: 1–4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.