175
Views
18
CrossRef citations to date
0
Altmetric
Articles

Anti-CD43 and anti-galectin-1 autoantibodies in patients with systemic lupus erythematosus

, , , , , & show all
Pages 50-57 | Accepted 02 May 2009, Published online: 04 Feb 2010

References

  • Sherer Y, Gorstein A, Fritzler MJ, Shoenfeld Y. Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum 2004; 34: 501–37
  • Li QZ, Zhou J, Wandstrat AE, Carr-Johnson F, Branch V, Karp DR. Protein array autoantibody profiles for insights into systemic lupus erythematosus and incomplete lupus syndromes. Clin Exp Immunol 2007; 147: 60–70
  • Reichlin M. ANAs and antibodies to DNA: their use in clinical diagnosis. Bull Rheum Dis 1993; 42: 3–5
  • Mansour RB, Lassoued S, Gargouri B, El Gaïd A, Attia H, Fakhfakh F. Increased levels of autoantibodies against catalase and superoxide dismutase associated with oxidative stress in patients with rheumatoid arthritis and systemic lupus erythematosus. Scand J Rheumatol 2008; 37: 103–8
  • Magalhaes MB, da Silva LM, Voltarelli JC, Donadi EA, Louzada-Junior P. Lymphocytotoxic antibodies in systemic lupus erythematosus are associated with disease activity irrespective of the presence of neuropsychiatric manifestations. Scand J Rheumatol 2007; 6: 442–7
  • Braun A, Sis J, Max R, Mueller K, Fiehn C, Zeier M, et al. Anti-chromatin and anti-C1q antibodies in systemic lupus erythematosus compared to other systemic autoimmune diseases. Scand J Rheumatol 2007; 36: 291–8
  • D'Cruz DP, Khamashta MA, Hughes GR. Systemic lupus erythematosus. Lancet 2007; 369: 587–96
  • Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med 2008; 358: 929–39
  • Pugh-Bernard AE, Cambier JC. B cell receptor signaling in human systemic lupus erythematosus. Curr Opin Rheumatol 2006; 18: 451–5
  • Nagy G, Koncz A, Perl A. T- and B-cell abnormalities in systemic lupus erythematosus. Crit Rev Immunol 2005; 25: 123–40
  • Ishikawa S, Akakura S, Abe M, Terashima K, Chijiiwa K, Nishimura H, et al. A subset of CD4+ T cells expressing early activation antigen CD69 in murine lupus: possible abnormal regulatory role for cytokine imbalance. J Immunol 1998; 161: 1267–73
  • Bohm I. Apoptosis: the link between autoantibodies and leuko-/lymphocytopenia in patients with lupus erythematosus. Scand J Rheumatol 2004; 33: 409–16
  • Reichlin M. Antibodies to defined antigens in the systemic rheumatic diseases. Bull Rheum Dis 1993; 42: 4–6
  • Aguilar-Delfín, I, Fierro, NA, Rosenstein, Y. CD43 molecule page. UCSD-Nature Signaling Gateway, 2006. doi:10.1038/mp.a000565.01.
  • Hernandez JD, Nguyen JT, He J, Wang W, Ardman B, Green JM, et al. Galectin-1 binds different CD43 glycoforms to cluster CD43 and regulate T cell death. J Immunol 2006; 177: 5328–36
  • Rosenstein Y, Park JK, Hahn WC, Rosen FS, Bierer BE, Burakoff SJ. CD43, a molecule defective in Wiskott–Aldrich syndrome, binds ICAM-1. Nature 1991; 354: 233–5
  • Matsumoto M, Atarashi K, Umemoto E, Furukawa Y, Shigeta A, Miyasaka M, et al. CD43 functions as a ligand for E-selectin on activated T cells. J Immunol 2005; 175: 8042–50
  • Silverman LB, Wong RC, Remold-O'Donnell E, Vercelli D, Sancho J, Terhorst C, et al. Mechanism of mononuclear cell activation by an anti-CD43 (sialophorin) agonistic antibody. J Immunol 1989; 142: 4194–200
  • delRio R, Rincón M, Layseca-Espinosa E, Fierro NA, Rosenstein Y, Pedraza-Alva G. PKCtheta is required for the activation of human T lymphocytes induced by CD43 engagement. Biochem Biophys Res Commun 2004; 325: 133–43
  • Mentzer SJ, Remold-O'Donnell E, Crimmins MA, Bierer BE, Rosen FS, Burakoff SJ. Sialophorin, a surface sialoglycoprotein defective in the Wiskott–Aldrich syndrome, is involved in human T lymphocyte proliferation. J Exp Med 1987; 165: 1383–92
  • Pedraza-Alva G, Mérida LB, Burakoff SJ, Rosenstein Y. T cell activation through the CD43 molecule leads to Vav tyrosine phosphorylation and mitogen-activated protein kinase pathway activation. J Biol Chem 1998; 273: 14218–24
  • Santana MA, Pedraza-Alva G, Olivares-Zavaleta N, Madrid-Marina V, Horejsi V, Burakoff SJ, et al. CD43-mediated signals induce DNA binding activity of AP-1, NF-AT, and NFkappa B transcription factors in human T lymphocytes. J Biol Chem 2000; 275: 31460–8
  • Park JK, Rosenstein YJ, Remold-O'Donnell E, Bierer BE, Rosen FS, Burakoff SJ. Enhancement of T-cell activation by the CD43 molecule whose expression is defective in Wiskott–Aldrich syndrome. Nature 1991; 350: 706–9
  • Fierro NA, Pedraza-Alva G, Rosenstein Y. TCR-dependent cell response is modulated by the timing of CD43 engagement. J Immunol 2006; 176: 7346–53
  • Woodman RC, Johnston B, Hickey MJ, Teoh D, Reinhardt P, Poon BY, et al. The functional paradox of CD43 in leukocyte recruitment: a study using CD43-deficient mice. J Exp Med 1998; 188: 2181–6
  • Stockton BM, Cheng G, Manjunath N, Ardman B, von Andrian UH. Negative regulation of T cell homing by CD43. Immunity 1998; 8: 373–81
  • Ardman B, Sikorski MA, Staunton DE. CD43 interferes with T-lymphocyte adhesion. Proc Natl Acad Sci USA 1992; 89: 5001–5
  • Remold-O'Donnell E, Kenney DM, Parkman R, Cairns L, Savage B, Rosen FS. Characterization of a human lymphocyte surface sialoglycoprotein that is defective in Wiskott–Aldrich syndrome. J Exp Med 1984; 159: 1705–23
  • Johnson GG, Mikulowska A, Butcher EC, McEvoy LM, Michie SA. Anti-CD43 monoclonal antibody L11 blocks migration of T cells to inflamed pancreatic islets and prevents development of diabetes in nonobese diabetic mice. J Immunol 1999; 163: 5678–85
  • Giordanengo V, Limouse M, Desroys du Roure L, Cottalorda J, Doglio A, Passeron A, et al. Autoantibodies directed against CD43 molecules with an altered glycosylation status on human immunodeficiency virus type 1 (HIV-1)-infected CEM cells are found in all HIV-1+ individuals. Blood 1995; 86: 2302–11
  • Ardman B, Sikorski MA, Settles M, Staunton DE. Human immunodeficiency virus type 1-infected individuals make autoantibodies that bind to CD43 on normal thymic lymphocytes. J Exp Med 1990; 172: 1151–8
  • Rabinovich GA, Liu FT, Hirashima M, Anderson A. An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand J Immunol 2007; 66: 143–58
  • Pace KE, Hahn HP, Pang M, Nguyen JT, Baum LG. CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death. J Immunol 2000; 165: 2331–4
  • Nguyen JT, Evans DP, Galvan M, Pace KE, Leitenberg D, Bui TN, et al. CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. J Immunol 2001; 167: 5697–707
  • Scott K, Weinberg C. Galectin-1: a bifunctional regulator of cellular proliferation. Glycoconj J 2004; 19: 467–77
  • Rabinovich GA, Daly G, Dreja H, Tailor H, Riera CM, Hirabayashi J, et al. Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J Exp Med 1999; 190: 385–98
  • Toscano MA, Commodaro AG, Ilarregui JM, Bianco GA, Liberman A, Serra HM, et al. Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. J Immunol 2006; 176: 6323–32
  • Pardo E, Cárcamo C, Massardo L, Mezzano V, Jacobelli S, González A, et al. Antibodies against galectin-8 in patients with systemic lupus erythematosus. Rev Med Chil 2006; 134: 159–66
  • Jensen-Jarolim E, Neumann C, Oberhuber G, Gscheidlinger R, Neuchrist C, Reinisch W, et al. Anti-galectin-3 IgG autoantibodies in patients with Crohn's disease characterized by means of phage display peptide libraries. J Clin Immunol 2001; 21: 348–56
  • Lutomski D, Joubert-Caron R, Lefebure C, Salama J, Belin C, Bladier D, et al. Anti-galectin-1 autoantibodies in serum of patients with neurological diseases. Clin Chim Acta 1997; 262: 131–8
  • Giordanengo L, Gea S, Barbieri G, Rabinovich GA. Anti-galectin-1 autoantibodies in human Trypanosoma cruzi infection: differential expression of this beta-galactoside-binding protein in cardiac Chagas’ disease. Clin Exp Immunol 2001; 124: 266–73
  • Couraud PO, Casentini-Borocz D, Bringman TS, Griffith J, McGrogan M, Nedwin GE. Molecular cloning, characterization, and expression of a human 14-kDa lectin. J Biol Chem 1989; 264: 1310–16
  • Remold-O'Donnell E, Zimmerman C, Kenney D, Rosen FS. Expression on blood cells of sialophorin, the surface glycoprotein that is defective in Wiskott–Aldrich syndrome. Blood 1987; 70: 104–9
  • Kao AH, Manzi S, Ramsey-Goldman R. Review of ACR hematologic criteria in systemic lupus erythematosus. Lupus 2004; 13: 865–8
  • Guzman J, Cardiel MH, Arce-Salinas A, Sánchez-Guerrero J, Alarcón-Segovia D. Measurement of disease activity in systemic lupus erythematosus. Prospective validation of 3 clinical indices. J Rheumatol 1992; 19: 1551–8
  • Vargas-Cortes M, Axelsson B, Larsson A, Berzins T, Perlmann P. Enhancement of human spontaneous cell-mediated cytotoxicity by a monoclonal antibody against the large sialoglycoprotein (CD43) on peripheral blood lymphocytes. Scand J Immunol 1988; 27: 661–71
  • Ramirez-Pliego O, Escobar-Zárate DL, Rivera-Martínez GM, Cervantes-Badillo MG, Esquivel-Guadarrama FR, Rosas-Salgado G, et al. CD43 signals induce Type One lineage commitment of human CD4+ T cells. BMC Immunol 2007; 8: 30
  • Corinti S, Fanales-Belasio E, Albanesi C, Cavani A, Angelisova P, Girolomoni G. Cross-linking of membrane CD43 mediates dendritic cell maturation. J Immunol 1999; 162: 6331–6
  • Guan EN, Burgess WH, Robinson SL, Goodman EB, McTigue KJ, Tenner AJ. Phagocytic cell molecules that bind the collagen-like region of C1q. Involvement in the C1q-mediated enhancement of phagocytosis. J Biol Chem 1991; 266: 20345–55
  • Brown TJ, Shuford WW, Wang WC, Nadler SG, Bailey TS, Marquardt H, et al. Characterization of a CD43/leukosialin-mediated pathway for inducing apoptosis in human T-lymphoblastoid cells. J Biol Chem 1996; 271: 27686–95
  • Stillman BN, Hsu DK, Pang M, Brewer CF, Johnson P, Liu FT, et al. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol 2006; 176: 778–89
  • Kurien BT, Scofield RH. Autoimmunity and oxidatively modified autoantigens. Autoimmun Rev 2008; 7: 567–73
  • Wandstrat AE, Carr-Johnson F, Branch V, Gray H, Fairhurst AM, Reimold A, et al. Autoantibody profiling to identify individuals at risk for systemic lupus erythematosus. J Autoimmun 2006; 27: 153–60
  • Molina JF, Molina J, García C, Gharavi AE, Wilson WA, Espinoza LR. Ethnic differences in the clinical expression of systemic lupus erythematosus: a comparative study between African-Americans and Latin Americans. Lupus 1997; 6: 63–7
  • Pace KE, Lee C, Stewart PL, Baum LG. Galectin-1 is expressed by thymic epithelial cells in myasthenia gravis. Glycoconj J 1996; 13: 591–7
  • Romero MD, Muiño JC, Bianco GA, Ferrero M, Juarez CP, Luna JD, et al. Circulating anti-galectin-1 antibodies are associated with the severity of ocular disease in autoimmune and infectious uveitis. Invest Ophthalmol Vis Sci 2006; 47: 1550–6
  • Garín MI, Chu CC, Golshayan D, Cernuda-Morollón E, Wait R, Lechler RI. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 2007; 109: 2058–65
  • Oppenheim JJ, Tewary P, de la Rosa G, Yang D. Alarmins initiate host defense. Adv Exp Med Biol 2007; 601: 185–94

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.