28
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Keynote Address: Man, Mice, Microsomes, Metabolites, and Mathematics 40 Years after the Revolution

Pages 1-44 | Published online: 22 Sep 2008

References

  • Berg P. Acyl adenylates: An enzymatic mechanism of acetate activation. J. Biol. Chem. 1956; 222: 991–1013
  • Jencks W. P., Lipmann F. Studies on the initial step of fatty acid activation. J. Biol. Chem. 1957; 225: 207–233
  • Schachter D., Taggart J. V. Glycine N-acetylase: Purification and properties. J. Biol. Chem. 1954; 208: 263–275
  • Moldave K., Meister A. Enzymic acylation of glutamine by phenylacetic acid. Biochim. Biophys. Acta 1957; 24: 654–655
  • Moldave K., Meister A. Participation of phenylacetyladenyl-ate in the enzymic synthesis of phenylacetylglutamine. Biochim. Biophys. Acta 1957; 25: 434–435
  • Dutton G. J., Storey I. D. E. Glucuronide synthesis in liver homogenates. Biochem. J 1951; 48(xxix)
  • Dutton G. J., Storey I. D. E. Uridine compounds in glucuronic acid metabolism. 1. The formation of glucuronides in liver suspensions. Biochem. J. 1954; 57: 275–283
  • Storey I. D. E., Dutton G. J. Uridine compounds in glucuronic acid metabolism. 2. The isolation and structure of uridine-diphosphate-glucuronic acid. Biochem. J. 1955; 59: 279–287
  • Dutton G. J. Uridine diphosphate glucuronic acid as a glucuronyl donor in the synthesis of “ester,” aliphatic and steroid glucuronides. Biochem. J. 1956; 64: 693–701
  • Strominger J. L., Maxwell E. S., Axelrod J., Kalcker H. M. Enzymatic formation of uridine diphosphoglucuronic acid. J. Biol. Chem. 1957; 224: 79–90
  • Axelrod J., Inscoe J. K., Tomkins G. M. Enzymatic synthesis of N-glucosyluronic acid conjugates. J. Biol. Chem. 1958; 232: 835–840
  • Cramer J. W., Miller J. A., Miller E. C. N-Hydroxylation: A new metabolic reaction observed in the rat with the carcinogen 2-acetylaminofluorene. J. Biol. Chem. 1960; 235: 885–888
  • Isselbacher K. J., Axelrod J. Enzymatic formation of corticosteroid glucuronides. J. Am. Chem. Soc 1955; 27: 1070–1071
  • Strominger H. M., Maxwell E. S., Axelrod J., Kalckar H. M. Enzymatic formation of uridine diphosphoglucuronic acid. J. Biol. Chem. 1957; 224: 79–90
  • Robbins P. W., Lipmann F. Separation of the two enzymatic phases in active sulfate synthesis. J. Biol. Chem. 1958; 233: 681–685
  • Robbins P. W., Lipmann F. Enzymatic synthesis of adenos-ine-5′-phosphosulfate. J. Biol. Chem. 1958; 233: 686–690
  • Cantoni G. L. S-Adenosylmethionine: A new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J. Biol. Chem. 1953; 204: 403–416
  • Cantoni G. L., Durell J. Activation of methionine for transmethylation. II. The methionine-activating enzyme: Studies on the mechanism of reaction. J. Biol. Chem. 1953; 225: 1033–1048
  • Axelrod J., Senoh S., Witkop B. O-Methylation of catecholamines. in vivo, J. Biol. Chem. 1958; 233: 607–701
  • Axelrod J., Tomchick R. Enzymatic O-methylation of epinephrine and other catechols. J. Biol. Chem. 1958; 233: 702–705
  • Barnes M. M., James S. P., Wood P. B. The formation of mercapturic acids. 1. Formation of mercapturic acids and levels of glutathione in tissues. Biochem. J. 1959; 71: 680–690
  • Knight R. H., Young L. The urinary excretion of premer-capturic acids. Biochem. J 1957; 66: P55
  • Boyland E., Sims P., Solomon J. B. Metabolism of polycy-clic hydrocarbons. 11. The conversion of naphthalene into 2-hy-droxy-1-naphthyl sulfate. Biochem. J. 1957; 66: 38–40
  • Boyland E., Sims P. Metabolism of polycyclic hydrocarbons. 12. An acid-labile precursor of 1-naphthylmercapturic acid and naphthol: An A^-acetyl-5-(l:2-dihydrodihydroxynaphthyl) L-cysteine. Biochem. J. 1958; 68: 440–447
  • Mueller G. C., Miller J. A. The reductive cleavage of 4-dimethylaminoazobenzene by rat liver. Reactivation of carbon dioxide treated homogenates by riboflavin-adenine dinucleotide. J. Biol. Chem. 1950; 185: 145–154
  • Fouts J. R., Kamm J. J., Brodie B. B. Enzymatic reduction of prontosil and other azo dyes. J. Pharmacol. Exp. Ther. 1957; 120: 291–300
  • Fouts J. R., Brodie B. B. The enzymatic reaction of chloramphenicol, p-nitrobenzoic acid, and other aromatic nitro compounds in mammals. J. Pharmacol. Exp. Ther. 1957; 119: 197–207
  • Butler T. C. Reduction of carbon tetrachloride in vivo by tissues and tissue constituents. J. Pharmacol. Exp. Ther. 1961; 134: 311–319
  • Mueller G. C., Miller J. A. The metabolism of methylated aminoazo dyes. II. Oxidative demethylation of rat liver microsomes. J. Biol. Chem. 1953; 202: 579–587
  • Axelrod J. The enzymatic deamination of amphetamine (Benzedrine). J. Biol. Chem. 1955; 214: 753–763
  • Brodie B. B., Axelrod J., Cooper J. R., Gaudette L., La Du B. N., Mitoma C., Udenfriend S. Detoxification of drugs and other foreign compounds by liver microsomes. Science 1955; 121: 603–604
  • La Du B. N., Gaudette L., Trousof N., Brodie B. B. Enzymatic dealkylation of aminopyrine (Pyramidon) and other alkyl-amines. J. Biol. Chem. 1955; 214: 741–752
  • Axelrod J. The enzymic cleavage of aromatic ethers. Biochem. J. 1956; 63: 634–639
  • Cooper J. R., Brodie B. B. The enzymatic metabolism of hexobarbital (Evipal). J. Pharmacol. Exp. Ther. 1955; 114: 409–417
  • Mitoma C., Posner H. S., Reitz H. C., Udenfriend S. Enzymatic hydroxylation of aromatic compounds. Arch. Biochem. Biophys. 1956; 61: 431–441
  • Boyland E. Biological significance of metabolism of hydrocarbons. Symp. Biochem. Soc 1950; 5: 40–54
  • Booth J., Boyland E., Sato T., Sims P. Metabolism of poly-cyclic hydrocarbons. 17. The reaction of 1:2-dihydronaphthalene and l:2-epoxy 1,2,3,4-tetrahydronaphthalene with glutathione catalyzed by tissue preparations. Biochem. J. 1960; 77: 182–186
  • Holtzman J. L., Gillette J. R., Milne G. W. A. The incorporation of 18O into naphthalene in the enzymatic formation of 1,2-dihydronaphthalene-l,2-diol. J. Biol. Chem. 1967; 242: 4386–4387
  • Jerina D. M., Daly J. W., Witkop B., Zaltzman-Nirenberg P., Udenfriend S. The role of arene oxide-oxepin systems in the metabolism of aromatic substrates. 3. Formation of 1,2-naphthalene oxide from naphthalene by liver microsomes. J. Am. Chem. Soc 1968; 90: 6525–6527
  • Cooper J. R., Axelrod J., Brodie B. B. Inhibitory effects of P-diethylaminoethyl diphenylpropylacetate on a variety of drug metabolic pathways in vitro. J. Pharmacol. Exp. Ther 1954; 112: 55–63
  • Axelrod J., Reichental J., Brodie B. B. Mechanism of the potentiating action of β-diethylaminoethyl diphenylpropylacetate. J. Pharmacol. Exp. Ther. 1954; 112: 49–54
  • Fouts J. R., Brodie B. B. Inhibition of drug metabolic pathways by the potentiating agent 2,4-dichloro-6-phenylphenoxyethyl diethylamine. J. Pharmacol. Exp. Ther. 1955; 115: 68–73
  • Fouts J. R., Brodie B. B. On the mechanism of drug potentiation by iproniazid (2-isopropyl-l-isonicotinyl hydrazine). J. Pharmacol. Exp. Ther. 1956; 116: 480–485
  • Conney A. H., Miller E. C., Miller J. A. The metabolism of methylated aminoazo dyes. V. Evidence for induction of enzyme synthesis in the rat by 3-methylcholanthrene. Cancer Res. 1956; 16: 450–459
  • Remmer H. Die Beschleunigung des Evipanabbaues unter der Wirkung von Barbituraten,. Naturwissenschaften 1958; 45: 189
  • Conney A. H., Burns J. J. Stimulatory effects of foreign compounds on ascorbic acid biosynthesis and on drug-metabolizing enzymes. Nature, London 1959; 184: 363–364
  • Conney A. H., Gillette J. R., Inscoe J. K., Trams E. B., Posner H. S. Induced synthesis of liver microsomal enzymes which metabolize foreign compounds. Science 1959; 130: 1478–1479
  • Conney A. H. Pharmacological implications of microsomal enzyme induction. Pharmacol. Rev. 1967; 19: 317–366
  • Klingenberg M. Pigments in rat liver microsomes. Arch. Biochem. Biophys. 1958; 75: 376–386
  • Garfinkel D. Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions. Arch. Biochem. Biophys. 1958; 77: 493–509
  • Horecker B. L. Triphosphopyridine nucleotide-cytochrome c reductase in liver. J. Biol. Chem. 1950; 183: 593–605
  • Gillette J. R., Brodie B. B., La Du B. M. The oxidation of drugs by liver microsomes: On the role of TPNH and oxygen. J. Pharmacol. Exp. Ther. 1957; 119: 532–540
  • Ryan K. J., Engel L. L. Hydroxylation of steroids at carbon 21. J. Biol. Chem. 1957; 225: 103–114
  • Omura T., Sato R. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 1964; 239: 2370–2378
  • Omura T., Sato R. The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification, and properties. J. Biol. Chem. 1964; 239: 2378–2385
  • Estabrook R. W., Cooper D. Y., Rosenthal O. The light reversible carbon monoxide inhibition of the steroid C21-hydroxylase system in the adrenal cortex. Biochem. Z. 1963; 338: 741–755
  • Cooper D. V., Levin S., Narasimhulu S., Rosenthal O., Estabrook R. W. Photochemical action spectrum of the terminal oxidase of mixed function oxidase systems. Science 1965; 147: 400–402
  • Omura T., Sato R., Cooper D. Y., Rosenthal O., Estabrook R. W. Function of cytochrome P-450 of microsomes. Fed. Proc 1965; 24: 1181–1189
  • Lu A. Y. H., Coon M. J. Role of hemoprotein P-450 in fatty acid omega-hydroxylation in a soluble enzyme system from liver microsomes. J. Biol. Chem. 1968; 243: 1331–1332
  • Miller E. C. Studies on the formation of protein-bound derivatives of 3,4-benzpyrene in the epidermal fraction of mouse skin. Cancer Res. 1951; 11: 100–108
  • Miller E. C., Miller J. A. In vivo combination between carcinogens and tissue constituents and their possible role in carcinogenesis. Cancer Res. 1952; 12: 547–556
  • Wiest W. G., Heidelberger C. The interaction of carcinogenic hydrocarbons with tissue constituents. II. 1,2,5,6-dibenzathracene-9,10-C14 in skin. Cancer Res. 1953; 13: 250–254
  • Riegel I. L., Mueller G. C. Formation of a protein-bound metabolite of estradiol-16-C14 by rat liver homogenates. J. Biol. Chem. 1954; 210: 249–257
  • Gelboin H. V., Miller J. A., Miller E. C. Studies on hepatic protein-bound dye formation in rats given single large doses of 3′ -rnethyl-4-dimethylaminoazobenzene. Cancer Res. 1958; 18: 608–617
  • Hecker E., Mueller G. C. Formation of tetralin-p-quinol and a protein-bound derivative from tetrahydro-2-naphthol-8-C14 by rat liver microsomes. J. Biol. Chem. 1958; 233: 991–996
  • Cramer J. W., Miller J. A., Miller E. C. The hydroxylation of the carcinogen 2-acetylaminofluorene by rat liver: Stimulation by treatment in vivo with 3-methylcholanthrene. J. Biol. Chem. 1960; 235: 250–256
  • Hultin T. Reactions of C14-labeled carcinogenic azo dyes with rat liver proteins. Exp. Cell Res. 1957; 13: 47–59
  • Hultin T. Reactions of 2-aminofluorene and related aromatic amines with liver proteins in vitro, Exp. Cell Res 1959; 18: 112–125
  • Decken A. von der, Hultin T. The enzymatic composition of rat liver microsomes during liver regeneration. Exp. Cell Res. 1960; 19: 591–603
  • Gutman H. R., Peters J. H. Studies on the action of rat liver on 2-acetylaminofluorene. J. Biol. Chem. 1954; 211: 63–74
  • Peters J. H., Gutman H. R. Stimulation of hydroxylation and protein binding of the carcinogen 2-acetylaminofluorene in rat liver homogenates. Arch. Biochem. Biophys. 1956; 62: 234–236
  • Gutman H. R., Peters J. H., Burtle J. G. The metabolism in vitro of fluorene derivatives by rat liver: Hydroxylation and protein binding. J. Biol. Chem. 1956; 222: 373–386
  • Dutton G. J., Greig C. G. Observations on the distribution of glucuronide synthesis in tissues. Biochem. J 1957; 66: 52P
  • Robinson D., Williams R. T. Do cats form glucuronides?. Biochem. J 1958; 68: 23P
  • Marshall E. K., Jr., Cutting W. C., Emerson K., Jr. Acety-lation of p-aminobenzene sulfonamide in the animal organism. Science 1937; 85: 202–203
  • Muenzen J. B., Cerecedo L. R., Sherwin C. P. Comparative metabolism of certain aromatic acids. VIII. Acetylation of amino compounds. J. Biol. Chem. 1926; 67: 469–476
  • Bray H. G., Franklin T. J., James S. P. N-Acetylation of S-substituted cysteine in the rabbit, rat, and guinea pig. Biochem. J. 1959; 73: 465–473
  • Axelrod J. Studies on sympathomimetic amines. II. The biotransformation and physiological disposition of d-amphetamine d-p-hydroxyamphetamine and d-methamphetamine. J. Pharmacol. Exp. Ther. 1954; 110: 315–326
  • Quinn G. P., Axelrod J., Brodie B. B. Species, strain, and sex differences in the metabolism of hexobarbitone, amidopyrine, antipyrine, and aniline. Biochem. Pharmacol 1958; 1: 152–159
  • Brodie B. B. Of mice, microsomes and man. Pharmacologist 1964; 6: 12–26
  • Shannon J. A. The study of antimalarials and antimalarial activity in the human malarias. Harvey Led. Ser 1945; 41: 43–89, 1946
  • Shannon J. A., Earle D. P., Brodie B. B., Taggart J. V., Berliner R. W. The pharmacological basis for the rational use of Atabrine in the treatment of malaria. J. Pharmacol. Exp. Ther. 1944; 81: 307–330
  • Williams R. T. Detoxification Mechanisms 2nd ed. Wiley & Sons, New York 1959
  • Gillette J. R., Dingell J. V., Sulser F., Kuntzman R., Brodie B. B. Isolation from rat brain of a metabolic product, desmethyl-imipramine, that mediates the antidepressant activity of imipramine (Tofranil). Experientia 1961; 17: 377–432
  • Brodie B. B., Bickel M. H., Sulser F. Desmethylimipramine, a new type of antidepressant drug. Med. Exp. 1961; 5: 454–458
  • Dingell J. V., Sulser F., Gillette J. R. Species differences in the metabolism of imipramine and desmethylimipramine (DMI). J. Pharmacol. Exp. Ther. 1964; 143: 14–22
  • Schumacher H., Smith R. L., Williams R. T. The metabolism of thalidomide: The spontaneous hydrolysis of thalidomide in solution. Br. J. Pharmacol 1965; 25: 324–337
  • Schumacher H., Blake D. A., Gurian J. M., Gillette J. R. A comparison of the teratogenic activity of thalidomide in rabbits and rats. J. Pharmacol. Exp. Ther. 1968; 160: 189–200
  • Schumacher H., Blake D. A., Gillette J. R. Disposition of thalidomide in rabbits and rats. J. Pharmacol. Exp. Ther. 1968; 160: 201–211
  • Gordon G. B., Spielberg S. P., Blake D. A., Balasubra-manian V. Thalidomide teratogenesis: Evidence for a toxic arene oxide metabolite. Proc. Natl. Acad. Sci. USA 1981; 78: 2545–2548
  • Brodie B. B., Reid W. D., Cho A. K., Sipes G., Krishna G., Gillette J. R. Possible mechanism of liver necrosis caused by aromatic organic compounds. Proc. Natl. Acad. Sci. USA 1971; 68: 160–164
  • Reid W. R., Christie B., Krishna G., Mitchell J. R., Moskowitz J., Brodie B. B. Bromobenzene metabolism and hepatic necrosis. Pharmacology 1971; 6: 41–55
  • Reid W. D., Christie B., Eichelbaum M., Krishna G. 3-Methylcholanthrene blocks hepatic necrosis influenced by administration of bromobenzene or carbon tetrachloride. Exp. Mol. Pathol. 1971; 15: 363–372
  • Zampaglione N., Jollow D. J., Mitchell J. R., Stripp B., Hamrick M., Gillette J. R. Role of detoxifying enzymes in bro-mobenzene-induced liver necrosis. J. Pharmacol. Exp. Ther. 1973; 187: 218–227
  • Reid W. D. Mechanism of renal necrosis influenced by bromobenzene or chlorobenzene. Exp. Mol. Pathol. 1973; 19: 197–214
  • Jollow D. J., Mitchell J. R., Zampaglione N., Gillette J. R. Bromobenzene-induced liver necrosis, protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 1974; 11: 151–169
  • Monks T. J., Pohl L. R., Gillette J. R., Hong M., Highet R. J., Ferretti J. A., Hinson J. A. Stereoselective formation of bromobenzene glutathione conjugates. Chem.-Biol. Interact. 1982; 41: 203–216
  • Monks T. J., Hinson J. A., Gillette J. R. Bromobenzene and p-bromophenol toxicity and covalent binding. in vivo, Life Set 1982; 30: 841–848
  • Monks T. J., Lau S. S., Highet R. J. Formation of nontoxic reactive metabolites of p-bromophenol. Identification of a new glutathione conjugate. Drug Metab. Dispos. 1984; 12: 432–437
  • Lau S. S., Monks T. J., Greene K. E., Gillette J. R. The role of ortho-bromophenol in the nephrotoxicity of bromobenzene in rats. Toxicol. Appl. Pharmacol. 1984; 72: 539–549
  • Monks T. J., Lau S. S., Pohl L. R., Gillette J. R. The mechanism of formation of o-bromophenol from bromobenzene. Drug Metab. Dispos. 1984; 12: 193–198
  • Lau S. S., Monks T. J., Gillette J. R. Multiple reactive metabolites derived from bromobenzene. Drug Metab. Dispos. 1984; 12: 291–296
  • Monks T. J., Lau S. S. Activation and detoxification of bromobenzene in extrahepatic tissues. Life Sci. 1984; 35: 561–568
  • Lau S. S., Monks T. J., Gillette J. R. Identification of 2-bromohydroquinone as a metabolite of bromobenzene and o-bromophenol: Implications for bromobenzene-induced nephrotoxicity. J. Pharmacol. Exp. Ther. 1984; 230: 360–366
  • Mitchell J. R., Jollow D. J., Potter W. Z., Davis D C., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J. Pharmacol. Exp. Ther. 1973; 187: 185–194
  • Jollow D. J., Mitchell J. R., Potter W. Z., Davis D. C., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J. Pharmacol. Exp. Ther 1973; 187: 195–202
  • Potter W. Z., Davis D. C., Mitchell J. R., Jollow D. J., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. III. Cytochrome P-450-mediated covalent binding in vitro. J. Pharmacol. Exp. Ther 1973; 187: 203–210
  • Mitchell J. R., Jollow D. J., Potter W. Z., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmacol. Exp. Ther. 1973; 187: 211–217
  • Davis D. C., Potter W. Z., Jollow D. J., Mitchell J. R. Species differences in hepatic glutathione depletion, covalent binding and hepatic necrosis after acetaminophen. Life Sci. 1974; 14: 2099–2109
  • Potter W. Z., Thorgeirsson S. S., Jollow D. J., Mitchell J. R. Acetaminophen-induced hepatic necrosis. V. Correlation of hepatic necrosis, covalent binding and glutathione depletion in hamsters. Pharmacology 1974; 12: 129–143
  • Jollow D. J., Thorgeirsson S. S., Potter W. Z., Hashimoto M., Mitchell J. R. Acetaminophen-induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen. Pharmacology 1974; 12: 251–271
  • Mitchell J. R., Thorgeirsson S. S., Potter W. Z., Jollow D. J., Keiser H. Acetaminophen-induced hepatic injury: Protective role of glutathione in man and rationale for possible therapy. Clin. Pharmacol. Ther. 1974; 16: 676–684
  • McMurtry R. J., Snodgrass W. R., Mitchell J. R. Renal necrosis, glutathione depletion and covalent binding after acetaminophen. Toxicol. Appl. Pharmacol. 1978; 46: 87–100
  • Hinson J. A., Pohl L. R., Gillette J. R. W-Hydroxyace-taminophen: A microsomal metabolite of N-hydroxyphenacetin but apparently not of acetaminophen. Life Sci. 1979; 24: 2133–2138
  • Rollins D. E., Buckpitt A. R. Liver cytosol catalyzed conjugation of reduced glutathione with a reactive metabolite of acetaminophen. Toxicol. Appl. Pharmacol 1979; 47: 331–339
  • Hinson J. A., Pohl L. R., Monks T. J., Gillette J. R. Ac-etaminophen-induced hepatotoxicity. Life Sci. 1981; 29: 107–116
  • Gillette J. R., Nelson S. D., Mulder G. J., Jollow D. J., Mitchell J. R., Pohl L. R., Hinson J. A. Formation of chemically reactive metabolites of phenacetin and acetaminophen. Biological Reactive Intermediates—II, Part B, R. Snyder, D. V. Parke, J. J. Kocsis, D. J. Jollow, C. M. Witmer. Plenum. 1982; 931–950
  • Hinson J. A., Mitchell J. R., Jollow D. J. Microsomal N-hydroxylation of p-chloroacetanilide. Mol. Pharmacol. 1975; 11: 462–469
  • Hinson J. A., Mitchell J. R., Jollow D. J. N-Hydroxylation of p-chloroacetanilide in hamsters. Biochem. Pharmacol. 1976; 25: 599–601
  • Hinson J. A., Mitchell J. R. Af-Hydroxylation of phenacetin by hamster liver microsomes. Drug Metab. Dispos. 1976; 4: 430–435
  • Mulder G. J., Hinson J. A., Gillette J. R. Generation of reactive metabolites of N-hydroxy-phenacetin by glucuronidation and sulfation. Biochem. Pharmacol 1977; 26: 189–196
  • Hinson J. A., Nelson S. D., Mitchell J. R. Studies on the microsomal formation of arylating metabolites of acetaminophen and phenacetin. Mol. Pharmacol 1977; 13: 625–633
  • Mulder G. J., Hinson J. A., Gillette J. R. Conversion of the N-O-glucuronide and N-O-sulfate conjugates of W-hydroxyphenacetin to reactive intermediates. Biochem. Pharmacol 1978; 26: 1641–1649
  • Nelson S. D., Garland W. A., Mitchell J. R., Vaishnav Y., Statham C. N., Buckpitt A. R. Deuterium isotope effects on the metabolism and toxicity of phenacetin in hamsters. Drug Metab. Dispos. 1978; 6: 363–367
  • Hinson J. A., Andrews L. S., Mulder G. J., Gillette J. R. Decomposition mechanisms of N-O-glucuronide and N-0-sulfate conjugates of phenacetin and other arylamides. Conjugation Reactions in Drug Biotransformation, A. Aitio. North-Holland Biomedical Press, Elsevier. 1978; 455–465
  • Hinson J. A., Nelson S. D., Nelson, Gillette J. R. Metabolism of [p18O]-phenacetin: The mechanism of activation of phenacetin to reactive metabolites in hamsters. Mol. Pharmacol. 1979; 15: 419–427
  • Nelson S. D., Vaishnav Y., Gillette J. R., Hinson J. A. The use of 2H and 180 to examine arylating and alkylating pathways of phenacetin metabolism. Stable Isotopes: Proceedings of the Third International Conference. Academic Press, 1979; 385–392
  • Hinson J. A., Andrews L. S., Gillette J. R. Kinetic evidence for multiple chemically reactive intermediates in the breakdown of phenacetin N-O-glucuronide. Pharmacology 1979; 19: 237–248
  • Nelson S. D., Forte A. J., Vaishnav Y., Mitchell J. R., Gillette J. R., Hinson J. A. The formation of arylating and alkylating metabolites of phenacetin in hamsters and hamster liver microsomes. Mol. Pharmacol. 1981; 19: 140–145
  • Black M., Mitchell J. R., Zimmerman H. J., Ishak K. G., Epler G. R. Isoniazid-associated hepatitis in 114 patients. Gastroenterology 1975; 69: 289–302
  • Mitchell J. R., Long M. W., Thorgeirsson U. P., Jollow D. J. Acetylation rates and monthly liver function tests during one year of isoniazid preventive therapy. Chest 1975; 69: 181–190
  • Mitchell J. R., Thorgeirsson U. P., Black M., Timbrell J. A., Snodgrass W. R., Potter W. Z., Jollow D. J., Keiser H. R. Increased incidence of isoniazid hepatitis in rapid acetylators: Possible relation to hydrazine metabolites. Clin. Pharmacol. Ther. 1975; 18: 70–79
  • Mitchell J. R., Zimmerman H. J., Ishak K. G., Thorgeirsson U. P., Timbrell J. A., Snodgrass W. R., Nelson S. D. Isoniazid liver injury: Clinical spectrum, pathology and probable pathogenesis. Ann. Intern. Med. 1976; 84: 181–192
  • Nelson S. D., Mitchell J. R., Timbrell J. A., Snodgrass W. R., Corcoran G. B. Isoniazid and iproniazid: Activation of metabolites to toxic intermediates in man and rat. Science 1976; 193: 901–903
  • Timbrell J. A., Mitchell J. R., Snodgrass R., Nelson S. D. Isoniazid hepatotoxicity: The relationship between covalent binding and metabolism in vivo. J. Pharmacol. Exp. Ther 1980; 213: 364–369
  • Nelson S. D., Mitchell J. R., Snodgrass W. R., Timbrell J. A. Hepatotoxicity and metabolism of iproniazid and iso-propylhydrazine. J. Pharmacol. Exp. Ther. 1978; 206: 574–585
  • Boyd M. R. Role of metabolic activation in the pathogenesis of chemically induced pulmonary disease: Mechanism of action of the lung-toxic furan, 4-ipomeanol. Environ. Health Perspect. 1976; 16: 127–138
  • Boyd M. Evidence for the Clara cell as a site of cytochrome P450-dependent mixed-function oxidase activity in lung. Nature 1977; 269: 713–715
  • Sasame H. A., Gillette J. R., Boyd M. R. Effects of anti-NADPH cytochrome c reductase and anti-cytochrome b5 antibodies on the hepatic and pulmonary microsomal metabolism and co-valent binding of the pulmonary toxin 4-ipomeanol. Biochem. Biophys. Res. Commun. 1978; 84: 389–395
  • Boyd M. R., Burka L. T., Wilson B. J., Sasame H. A. In vitro studies on the metabolic activation of the pulmonary toxin 4-ipomeanol by rat lung and liver microsomes. J. Pharmacol. Exp. Ther. 1978; 207: 677–686
  • Dutcher J. S., Boyd M. R. Species and strain differences in target organ alkylation and toxicity by 4-ipomeanol predictive value of covalent binding in studies of target organ toxicities by reactive metabolites. Biochem. Pharmacol. 1979; 28: 3367–3372
  • Boyd M. R., Sasame H. A., Franklin R. B. Comparison or ratios of covalent binding to total metabolism of the pulmonary toxin 4-ipomeanol in vitro in pulmonary and hepatic microsomes, and the effects of pretreatments with phenobarbital or 3-methyl-cholanthrene. Biochem. Biophys. Res. Commun. 1980; 93: 1167–1172
  • Mitchell J. R., Potter W. Z., Hinson J. A., Jollow D. J. Hepatic necrosis caused by furosemide, a furan-containing diuretic. Nature 1974; 251: 508–511
  • Thorgeirsson S. S., Sasame H. A., Mitchell J. R., Jollow D. J., Potter W. Z. Biochemical changes after hepatic injury from toxic doses of acetaminophen or furosemide. Pharmacology 1976; 14: 205–217
  • Mitchell J. R., Nelson W. L., Potter W. Z., Sasame H. A., Jollow D. J. Metabolic activation of furosemide to a chemically reactive hepatotoxic metabolite. J. Pharmacol. Exp. Ther. 1976; 199: 41–52
  • McMurtry R. J., Mitchell J. R. Renal and hepatic necrosis after metabolic activation of 2-substituted furans and thiophenes, including furosemide and cephaloridine. Toxicol. Appl. Pharmacol. 1977; 42: 285–300
  • Stripp B., Hamrick M. E., Zampagione N. G., Gillette J. R. The effect of spironolactone on drug metabolism by hepatic microsomes. J. Pharmacol. Exp. Ther. 1971; 176: 766–771
  • Hamrick M. E., Zampaglione N., Stripp B., Gillette J. R. Investigation of the effects of methyltestosterone, cortisone and spironolactone on the hepatic microsomal mixed function oxidase system in male and female rats. Biochem. Pharmacol 1973; 22: 293–310
  • Menard R. H., Stripp B., Gillette J. R. Spironolactone and testicular cytochrome P-450: Decreased testosterone formation in several species and changes in hepatic drug metabolism. Endocrinology 1974; 94: 1628–1636
  • Menard R. H., Martin H. F., Stripp B., Gillette J. R., Bartter F. C. Spironolactone and cytochrome P-450: Impairment of steroid hydroxylation in the adrenal cortex. Life Sci. 1974; 15: 1639–1648
  • Stripp B., Taylor A. A., Bartter F. C., Gillette J. R., Loriaux D. L., Easley R., Menard R. H. Effect of spironolactone on sex hormones in man. J. Clin. Endocrinol. Metab. 1975; 41: 777–781
  • Menard R. H., Bartter F. C., Gillette J. R. Spironolactone and cytochrome P-450: Impairment of steroid 21-hydroxylation in the adrenal cortex. Arch. Biochem. Biophys. 1976; 173: 395–402
  • Menard R. H., Guenthner T. M., Kon H., Gillette J. R. Studies on the destruction of adrenal and testicular cytochrome P450 by spironolactone. J. Biol. Chem. 1979; 254: 1726–1733
  • Thorgeirsson S. S., Jollow D. J., Sasame H. A., Green I., Mitchell J. R. The role of cytochrome P-450 in N-hydroxylation of 2-acetylaminofluorene. Mol. Pharmacol. 1973; 9: 398–404
  • Mulder G. J., Hinson J. A., Nelson W. L., Thorgeirsson S. S. Role of sulfotransferase from rat liver in the mutagenicity of N-hydroxy-2-acetylaminofluorene in Salmonella typhimurium. Biochem. Pharmacol 1977; 26: 1356–1358
  • Andrews L. S., Hinson J. A., Gillette J. R. Studies on the mutagenicity of N-hydroxy-2-acetylaminofluorene in the Ames-Salmonella mutagenesis test system. Biochem. Pharmacol. 1978; 27: 2399–2408
  • Andrews L. S., Fysh J. M., Hinson J. A., Gillette J. R. Ascorbic acid inhibits covalent binding of enzymatically generated 2-acetylaminofluorene-Af-sulfate to DNA under conditions in which it increases mutagenesis in Salmonella TA1538. Life Sci. 1979; 24: 59–64
  • Andrews L. A., Pohl L. R., Hinson J. A., Fisk C. L., Gillette J. R. Production of a dimer of 2-acetylaminofluorene during the sulfation of N-hydroxy-2-acetylaminofluorene in vitro. Drug Metab. Dispos 1979; 7: 296–300
  • Nelson S. D., Mitchell J. R., Dybing E., Sasame H. A. Cytochrome P-450-mediated oxidation of 2-hydroxyestrogens to reactive intermediates. Biochem. Biophys. Res. Comtnun. 1976; 70: 1157–1165
  • Reid W. D. Mechanism of allyl alcohol-induced hepatic necrosis. Experientia 1972; 28: 1058–1061
  • Thorgeirsson S. S., Mitchell J. R., Sasame H. A., Potter W. Z. Biochemical changes after hepatic injury by allyl alcohol and AMvydroxy-2-acetylaminofluorene. Chem.-Biol. Interact. 1976; 15: 139–147
  • Feller D. R., Morita M., Gillette J. R. Reduction of heterocyclic nitro compounds in rat liver (35594). Proc. Soc. Exp. Biol. Med. 1971; 137: 433–437
  • Morita M., Feller D. R., Gillette J. R. Reduction of niridazole by rat liver xanthine oxidase. Biochem. Pharmacol. 1971; 20: 217–226
  • Feller D. R., Morita M., Gillette J. R. Enzymatic reduction of niridazole by rat liver microsomes. Biochem. Pharmacol. 1971; 20: 203–215
  • Boyd M. R., Stiko A. W., Sasame H. A. Metabolic activation of nitrofurantoin—Possible implications for carcinogenesis. Biochem. Pharmacol 1979; 28: 601–606
  • Sasame H. A., Boyd M. R. Superoxide and hydrogen peroxide production and NADPH oxidation stimulated by nitrofurantoin in lung microsomes: Possible implications for toxicity. Life Sci. 1979; 24: 1091–1096
  • Boyd M. R., Catignani G. L., Sasame H. A., Mitchell J. R., Stiko A. W. Acute pulmonary injury in rats by nitrofurantoin and modification by vitamin E dietary fat, and oxygen. Am. Rev. Respir. Dis. 1979; 120: 93–99
  • Reddy B. G., Pohl L. R., Krishna G. The requirement of the gut flora in nitrobenzene-induced methemoglobinemia in rats. Biochem. Pharmacol. 1976; 25: 1119–1122
  • Maling H. M., Highman B., Williams M. A., Saul W., Butler W. M., Jr., Brodie B. B. Reduction by pretreatment with Dibenamine of hepatotoxicity induced by carbon tetrachloride, thioacetamide or dimethylnitrosamine. Toxicol. Appl. Pharmacol. 1974; 27: 380–394
  • Stripp B., Sipes I. G., Maling H. M., Gillette J. R. Dibenamine impairment of rat hepatic microsomal enzymes and its relation to hepatotoxicity induced by CC14 and dimethylnitrosamine (DMN). Drug Metab. Dispos. 1974; 2: 464–468
  • Maling H. M., Stripp B., Sipes I. G., Highman B., Saul W., Williams M. A. Enhanced hepatotoxicity of carbon tetrachloride, thioacetamide and dimethylnitrosamine by pretreatment of rats with ethanol and some comparisons with potentiation by isopropanol. Toxicol. Appl. Pharmacol 1975; 33: 291–308
  • Rao G. S., Krishna G., Gillette J. R. Enzymatic formation of chemically reactive metabolites of Af-nitrosodesmethyl tripelen-namine by a mechanism other than Af-dealkylation. Biochem. Pharmacol. 1975; 24: 1707–1711
  • Rao G. S., Krishna G. Drug-nitrate interactions: Formation of N-nitroso, C-nitroso and nitro compounds from sodium nitrite and various drugs under physiological conditions. J. Pharm. ScL 1975; 64: 1579–1581
  • Rao G., Krishna G., Gillette J. R. Drug-nitrite interactions: The lack of toxicity of a N-nitroso derivative of tripelennamine formed in the rat. Toxicol. Appl. Pharmacol. 1975; 34: 264–270
  • Rao G., Krishna G., Gillette J. R. Metabolism, tissue distribution and covalent binding of tripelennamine and N-nitroso derivative in the rat. J. Pharmacol. Exp. Ther. 1975; 195: 433–440
  • Davis D. C., Hashimoto M., Gillette J. R. Effects of bromo-benzene and carbon tetrachloride on the synthesis and release of proteins by perfused rat liver. Biochem. Pharmacol. 1973; 22: 1989–2001
  • Castro J. A., DeFerreyra E. C., DeCastro C. R., DeFenos O. M., Sasame H., Gillette J. R. Prevention of carbon tetrachloride-induced necrosis by inhibitors of drug metabolism: Further studies on their mechanism of action. Biochem. Pharmacol. 1974; 23: 295–302
  • Maling H. M., Eichelbaum F. M., Saul W., Sipes I. G., Brown E. A., Gillette J. R. Nature of the protection against carbon tetrachloride-induced hepatotoxicity produced by pretreatment with dibenamine [A^-(2-choroethyl) dibenzylamine]. Biochem. Pharmacol. 1974; 23: 1479–1491
  • Sipes I. G., Krishna G., Gillette J. R. Bioactivation of carbon tetrachloride, chloroform and bromotrichloromethane: Role of cytochrome P-450. Life Sci. 1977; 20: 1541–1548
  • Pohl L. R., Branchflower R. V., Highet R. J., Martin J. L., Nunn D. S., Monks T. J., George J. W., Hinson J. A. The formation of diglutathionyl dithiocarbonate as a metabolite of chloroform, bromotrichloromethane, and carbon tetrachloride. Drug Metabol. Dispos. 1981; 9: 334–339
  • Mico B. A., Branchflower R. V., Pohl L. R., Pudzianowski A. T., Loew G. H. Oxidation of carbon tetrachloride, bromotrichloromethane, and carbon tetrabromide by rat liver microsomes to electrophilic halogens. Life Sci. 1982; 30: 131–137
  • Mico B. A., Pohl L. R. Metabolism of carbon tetrachloride to electrophilic chlorine by liver microsomes: Exclusion of cytochrome P-450 catalyzed chloroperoxidase reaction. Biochem. Biophys. Res. Commun. 1982; 10: 27–31
  • Mico B. A., Branchflower R. V., Pohl L. R. Formation of electrophilic chlorine from carbon tetrachloride involvement of cytochrome P-450. Biochem. Pharmacol. 1983; 32: 2357–2359
  • Mico B. A., Pohl L. R. Reductive oxygenation of carbon tetrachloride: Trichloromethylperoxyl radical as a possible intermediate in the conversion of carbon tetrachloride to electrophilic chlorine. Arch. Biochem. Biophys. 1983; 225: 596–609
  • Pohl L. R., George J. W. Identification of dichloromethyl carbene as a metabolite of carbon tetrachloride. Biochem. Biophys. Res. Commun. 1983; 117: 367–371
  • Pohl L. R., Schulick R. D., Highet R. J., George J. W. Reductive-oxygenation mechanism of metabolism of carbon tetrachloride to phosgene by cytochrome P-450. Mol. Pharmacol. 1984; 25: 318–321
  • Davies H. W., Britt S., Pohl L. R. Carbon tetrachloride and 2-isopropyl-4-pentenamide-induced inactivation of cytochrome P-450 leads to heme-derived protein adducts. Arch. Biochem. Biophys. 1986; 244: 387–392
  • Ilett K. F., Reid W. D., Sipes I. G., Krishna G. Chloroform toxicity in mice: Correlation of renal and hepatic necrosis with covalent binding of metabolites to tissue macromolecules. Exp. Mol. Pathol 1973; 19: 215–229
  • Docks E. L., Krishna G. The role of glutathione in chloroform-induced hepatotoxicity. Exp. Mol. Pathol. 1976; 24: 13–22
  • Pohl L. R., Bhooshan B., Whittaker N. F., Krishna G. Phosgene: A metabolite of chloroform. Biochem. Biophys. Res. Commun. 1977; 79: 684–691
  • Pohl L. R., Krishna G. Deuterium isotope effect in bioactivation and hepatotoxicity of chloroform. Life Sci. 1978; 23: 1067–1072
  • Pohl L. R., George J. W., Martin J. L., Krishna G. Deuterium isotope effect in in vivo bioactivation of chloroform to phosgene. Biochem. Pharmacol. 1979; 28: 561–563
  • Pohl L. R., Martin J. L., George J. W. Mechanism of metabolic activation of chloroform by rat liver microsomes. Biochem. Pharmacol. 1980; 29: 3271–3276
  • Branchflower R. V., Pohl L. R. Investigation of the mechanism of the potentiation of chloroform-induced hepatotoxicity and nephrotoxicity by methyl n-butyl ketone. Toxicol. Appl. Pharmacol 1981; 61: 407–413
  • Branchflower R. V., Schulick R. D., George J. W., Pohl L. R. Comparison of the effects of methyl-n-butyl ketone and phenobarbital on rat liver cytochrome P-450 and the metabolism of chloroform to phosgene. Toxicol. Appl. Pharmacol. 1983; 71: 414–421
  • Branchflower R. V., Nunn D. S., Highet R. J., Smith J. H., Hook J. B., Pohl L. R. Nephrotoxicity of chloroform: Metabolism to phosgene by the mouse kidney. Toxicol. Appl. Pharmacol. 1984; 72: 159–168
  • Pohl L. R., George J. W., Satoh H. Strain and sex differences in chloroform-induced nephrotoxicity. Different rates of metabolism of chloroform to phosgene by the mouse kidney. Drug Metab. Dispos. 1984; 12: 304–308
  • Krishna G. Covalent binding of drugs to tissue macromolecules as a biochemical mechanism of drug toxicities with special emphasis on chloramphenicol and thiamphenicol. Postgrad. Med. J. 1974; 50: 13–11
  • Pohl L. R., Krishna G. Study of the mechanism of metabolic activation of chloramphenicol by rat liver microsomes. Biochem. Pharmacol 1978; 27: 335–341
  • Pohl L. R., Nelson S. D., Krishna G. Investigation of the mechanism of the metabolic activation of chloramphenicol by rat liver microsomes: Identification of a new metabolite. Biochem. Pharmacol 1978; 27: 491–496
  • Pohl L. R., Reddy G. B., Krishna G. A new pathway of metabolism of chloramphenicol which influences the interpretation of its irreversible binding to protein in vivo. Biochem. Pharmacol 1979; 28: 2433–2440
  • Martin J. L., George J. W., Pohl L. R. Glutathione-dependent dechlorination of chloramphenicol by cytosol. Drug Metab. Dispos. 1980; 8: 93–97
  • Martin J. L., Gross B. J., Morris P., Pohl L. R. Mechanism of glutathione-dependent dechlorination of chloramphenicol and thiamphenicol by cytosol of rat liver. Drug Metab. Dispos. 1980; 8: 371–375
  • Gross B. J., Branchflower R. V., Burke T. R., Lees D. E., Pohl L. R. Bone marrow toxicity in vitro and chloramphenicol and its metabolites. Toxicol. Appl. Pharmacol. 1982; 64: 557–565
  • Morris P. A., Burke T. R., Jr., George J. W., Pohl L. R. A new pathway for the oxidative metabolism of chloramphenicol by rat liver microsomes. Drug Metab. Dispos. 1982; 10: 439–445
  • Morris P. L., Burke T. E., Jr., Pohl L. R. Reductive dechlorination of chloramphenicol by rat liver microsomes. Drug Metab. Dispos. 1983; 11: 126–130
  • Burke T. R., Jr., Martin J. L., George J. W., Pohl L. R. Investigation of the mechanism of defluorination of enflurane in rat liver microsomes with specifically deuterated derivatives. Biochem. Pharmacol 1980; 29: 1623–1626
  • Burke T. R., Branchflower R. V., Lees D. E., Pohl L. R. Mechanism of defluorination of enflurane: Identification of an organic metabolite in rat and man. Drug Metab. Dispos. 1981; 9: 19–24
  • Davis D. C., Schroeder D. H., Gram T. E., Reagan R. L., Gillette J. R. A comparison of the effect of halothane and CC14 on the hepatic drug metabolizing system. J. Pharmacol. Exp. Ther. 1971; 177: 556–566
  • Sipes I. G., Gandolfi A. J., Pohl L. R., Krishna G., Brown B. R., Jr. Comparison of the biotransformation and hepatotoxicity of halothane and deuterated halothane. J. Pharmacol. Exp. Ther. 1980; 214: 716–720
  • Pohl L. R., Gillette J. R. A perspective on halothane-induced hepatotoxicity. Anesth. Analg. 1982; 61: 809–811
  • Satoh H., Fukuda Y., Anderson D. K., Ferrans V. J., Gillette J. R., Pohl L. R. Immunological studies on the mechanism of halothane-induced hepatotoxicity: Immunohistochemical evidence of trifluoroacetylated hepatocytes. J. Pharmacol. Exp. Ther. 1985; 233: 857–862
  • Satoh H., Gillette J. R., Davies H. W., Schulick R. D., Pohl L. R. Immunochemical evidence of trifluoroacetylated cytochrome P-450 in the liver of halothane-treated rats. Mol. Pharmacol 1985; 28: 468–474
  • Christ D. D., Satoh H., Kenna J. G., Pohl L. R. Potential metabolic basis for enflurane hepatitis and the apparent cross-sen-sitization between enflurane and halothane. Drug Metab. Dispos. 1988; 16: 135–140
  • Kenna J. G., Satoh H., Christ D. D., Pohl L. R. Metabolic basis for a drug hypersensitivity: Antibodies in sera from patients with halothane hepatitis recognize liver neoantigens that contain the trifluoroacetyl group derived from halothane. J. Pharmacol. Exp. Ther. 1988; 245: 1103–1109
  • Long R. M., Satoh H., Martin B. M., Kimura S., Gonzalez F. J., Pohl L. R. Rat liver carboxylesterase: cDNA cloning, sequencing, and evidence for a multigene family. Biochem. Biophys. Res. Commun. 1988; 156: 866–873
  • Christ D. D., Kenna J. G., Krammerer W., Satoh H., Pohl L. R. Enflurane metabolism produces covalently bound liver adducts recognized by antibodies from patients with halothane hepatitis. Anesthesiology 1988; 69: 833–838
  • Satoh H., Martin B. M., Schulick A. H., Christ D. D., Kenna J. G., Pohl L. R. Human anti-endoplasmic reticulum antibodies in sera of patients with halothane-induced hepatitis are directed against a trifluoroacetylated carboxylesterase. Proc. Natl. Acad. Sci. USA 1989; 86: 322–326
  • Martin J. L., Kenna J. G., Pohl L. R. Antibody assays for the detection of patients sensitized to halothane. Anesth. Analg. 1990; 70: 154–159
  • Kenna J. G., Martin J. L., Satoh H., Pohl L. R. Factors affecting the expression of trifluoroacetylated liver microsomal protein neoantigens in rats treated with halothane. Drug Metab. Dispos. 1990; 18: 788–793
  • Martin J. L., Pumford N. R., LaRosa A. C., Martin B. M., Gonzaga H. M. S., Beaven M. A., Pohl L. R. A metabolite of halothane covalently binds to an endoplasmic reticulum protein that is highly homologous to phosphatidylinositol-specific phospholipase c-α but has no activity. Biochem. Biophys. Res. Commun. 1991; 178: 679–685
  • Hayden P. J., Ichimura T., McCann D. J., Pohl L. R., Stevens J. L. Detection of cysteine conjugate metabolite adduct formation with specific mitochondrial proteins using antibodies raised against halothane metabolite adducts. J. Biol. Chem. 1991; 66: 18415–18418
  • Martin J. L., Dubbink D. A., Plevak D. J., Peronne A., Taswell H. F., Hay E. J., Pumford N. R., Pohl L. R. Halothane hepatitis 28 years after primary exposure. Anesth. Analg. 1992; 74: 605–608
  • Butler L. E., Thomassen D., Martin J. L., Martin B. M., Kenna J. G., Pohl L. R. The calcium-binding protein calreticulum is covalently modified in rat liver by a reactive metabolite of the inhalation anesthetic halothane. Chem. Res. Toxicol 1992; 5: 406–412
  • Kenna J. G., Martin J. L., Pohl L. R. The topography of trifluoroacetylated protein antigens in liver microsomal fractions from halothane treated rats. Biochem. Pharmacol 1992; 44: 621–629
  • Harris J. W., Jones J. P., Martin J. L., LaRosa A. C., Olson M. J., Pohl L. R., Anders M. W. Pentahaloethane-based chlorofluorocarbon substitutes and halothane: Correlation of in vivo hepatic protein trifluoroacetylation and urinary trifluoroacetic acid excretion with calculated enthalpies of activation. Chem. Res. Toxicol 1992; 5: 720–725
  • Pumford N. R., Martin B. M., Thomassen D., Burris J. A., Kenna J. G., Martin J. L., Pohl L. R. Serum antibodies from halothane hepatitis patients react with the rat endoplasmic reticulum protein ERp72. Chem. Res. Toxicol 1993; 6: 609–615
  • Reynolds E. S. Liver parenchymal cell injury. IV. Pattern of incorporation of carbon and chlorine from carbon tetrachloride into chemical constituents of liver in vivo. J. Pharmacol, Exp. Ther 1967; 155: 117–126
  • Boyd M. R., Burka L. T., Wilson B. J. Distribution, excretion, and binding of radioactivity in the rat after intraperitoneal administration of the lung-toxic furan, [14C]4-ipomeanol. Toxicol. Appl. Pharmacol 1975; 32: 147–157
  • Gillette J. R. A perspective on the role of chemically reactive metabolites of foreign compounds in toxicity. I. Correlation of changes in covalent binding of reactivity metabolites with changes in the incidence and severity of toxicity. Biochem. Pharmacol 1974; 23: 2785–2794
  • Boelsterli U. A. Specific targets of covalent drug-protein interactions in hepatocytes and their toxicological significance in drug-induced liver injury. Drug Metab. Rev. 1993; 25: 395–451
  • Gillette J. R. A perspective on the role of chemically reactive metabolites of foreign compounds in toxicity. II. Alterations in the kinetics of covalent binding. Biochem. Pharmacol 1974; 23: 2927–2938
  • Gillette J. R. Formation of reactive metabolites as a cause of drug toxicity, in Ciba Foundation Symposium 26. The Poisoned Patient. The Role of the Laboratory. Associated Scientific Publishers, Amsterdam 1974; 29–55
  • Gillette J. R. The problem of chemically reactive metabolites. Drug Metab. Rev. 1982; 13: 941–961
  • Gillette J. R. The use of theoretical pharmacokinetic concepts in studies of the mechanisms of formation of chemically reactive metabolites in vitro and in vivo. Drug Metabol. Rev. 1983; 14: 9–33
  • Gillette J. R. Significance of covalent binding of chemically reactive metabolites of foreign compounds to proteins and lipids. Biological Reactive Intermediates 111, J. J. Kocsis, D. J. Jollow, C. M. Witmer, J. O. Nelson, R. Snyder. Plenum. 1986; 63–82
  • Walsh C., Cromantie T., Marcotte P., Spencer R. Suicide substrates for flavoprotein enzymes. Methods Enzymol. 1978; 53: 437–448
  • Gillette J. R. Kinetics of decomposition of chemically unstable metabolites in the presence of nucleophiles: Derivation of equations used in graphical analyses. Pharmacology 1980; 20: 64–86
  • Sasame H. A., Liberato D. J., Gillette J. R. The formation of a glutathione conjugate derived from propranolol. Drug Metab. Dispos. 1987; 15: 349–355
  • Monks T. J., Lau S. S., Gillette J. R. Diffusion of reactive metabolites out of hepatocytes: Studies with bromobenzene. J. Pharmacol. Exp. Ther. 1984; 228: 393–399
  • Gillette J. R., Lau S. S., Monks T. J. Intra- and extracellular formation of metabolites from chemically reactive species. Biochem. Soc. Trans. 1984; 12: 4–7
  • Lau S. S., Monks T. J., Greene K. E., Gillette J. R. Detection and half-life of bromobenzene-3,4-oxide in blood. Xeno-biotica 1984; 14: 539–543
  • Pang K. S., Rowland M. Hepatic clearance of drugs. II. Experimental evidence for acceptance of the “well-stirred” model over the “parallel tube” model using lidocaine in the perfused rat liver in situ preparation. J. Pharmacokinet. Biopharm. 1977; 5: 655–680
  • Pang K. S., Gillette J. R. Kinetics of metabolite formation and elimination in the perfused rat liver preparation: Differences between the elimination of preformed acetaminophen and acetaminophen formed from phenacetin. J. Pharmacol. Exp. Ther. 1978; 207: 178–194
  • Nagata K., Liberto D. J., Gillette J. R., Sasame H. A. An unusual metabolite of testosterone. 17-hydroxy-4,6-androstadiene-3-one. Drug Metab. Dispos. 1986; 14: 559–565
  • Korzekwa K. R., Trager W. F., Nagata K., Parkinson A., Gillette J. R. Isotope effect studies on the mechanism of the cytochrome P-450IIA1-catalyzed formation of A6-testosterone from testosterone. Drug Metab. Dispos. 1990; 18: 974–979
  • Korzekwa K. R., Trager W. F., Gillette J. R. Theory for the observed isotope effects from enzymatic systems that form multiple products via branched reaction pathways: Cytochrome P-450. Biochemistry 1989; 28: 9012–9018
  • Harada N., Miwa G. T., Walsh J. R., Lu A. Y. H. Kinetic isotope effects on cytochrome P-450-catalyzed oxidation reactions. Evidence for the irreversible formation of an active oxygen intermediate of cytochrome P-448. J. Biol. Chem. 1984; 259: 3005–3010
  • Gillette J. R., Darbyshire J. F., Sugiyama K. Theory for the observed isotope effects on the formation of multiple products by different kinetic mechanisms of cytochrome P450 enzymes. Biochemistry 1994; 33: 2927–2937
  • Darbyshire J. F., Gillette J. R., Nagata K., Sugiyama K. Deuterium isotope effects on A-ring and D-ring metabolism of testosterone by CYP2C11: Evidence for dissociation of activated enzyme-substrate complexes. Biochemistry 1994; 33: 2938–2944

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.