162
Views
147
CrossRef citations to date
0
Altmetric
Research Article

Mechanisms of the Formation and Disposition of Reactive Metabolites That can Cause Acute Liver Injury

Pages 147-177 | Published online: 22 Sep 2008

References

  • Miller E. C., Miller J. A. The presence and significance of bound aminazo dyes in the livers of rats fed p-dimethylaminoazo-benzene. Cancer Res. 1947; 7: 468–480
  • Recent advances in drug metabolism and toxicity. Semin. Liver Dis., P. D. Berk, C. S. Lieber, F. Schaffner, N. Kaplowitz, 1990; 10: 233–338
  • Hinson J. A., Pumford N. R., Nelson S. D. The role of metabolic activation in drug toxicity. Drug Metab. Rev. 1994; 26: 395–412
  • Bioactivation of Foreign Compounds, M. W. Anders. Academic Press, Orlando, FL 1985
  • Monks T. J., Lau S. S. Reactive intermediates and their toxi-cological significance. Toxicology 1988; 52: 1–53
  • Biological Reactive Intermediates IV, C. M. Witmer, R. R. Snyder, D. J. Jollow, G. F. Kalf, J. J. Kocsis, I. G. Sipes. Plenum Press, New York 1991
  • Guengerich F. P., Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chetn. Res. Toxicol. 1991; 4: 391–407
  • Nelson S. D., Pearson P. G. Covalent and noncovalent interactions in acute lethal cell injury caused by chemicals. Ann. Rev. Pharmacol. Toxicol. 1990; 30: 169–195
  • Hinson J. A., Roberts D. W. Role of covalent and noncovalent interactions in cell toxicity: Effects on proteins. Ann. Rev. Pharmacol. Toxicol. 1992; 32: 471–510
  • Satoh H., Fukuda Y., Anderson D. K., Ferrans V. J., Gillette J. R., Pohl L. R. Immunological studies on the mechanism of halothane-induced hepatotoxicity: Immunochemical evidence of trifluoroacetylated hepatocytes. J. Pharmacol. Exp. Ther. 1985; 233: 857–862
  • Pohl L. R. An immunochemical approach of identifying and characterizing protein targets of toxic reactive metabolites. Chem. Res. Toxicol. 1993; 6: 786–793
  • Hinson J. A. Biochemical toxicology of acetaminophen. Rev. Biochem. Toxicol. 1980; 2: 103–130
  • Black M. Acetaminophen hepatotoxicity. Ann. Rev. Med. 1984; 35: 577–593
  • Nelson S. D. Molecular mechanisms of the hepatotoxicity caused by acetaminophen. Semin. Liver Dis. 1990; 10: 267–278
  • Vermeulen N. P. E., Bessems J. G. M., van de Straat R. Molecular aspects of paracetamol-induced hepatotoxicity and its mechanism-based prevention. Drug Metab. Rev. 1992; 24: 367–407
  • Mitchell J. R., Jollow D. J., Potter W. Z., Davis D. C., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J. Pharmacol. Exp. Ther. 1973; 187: 185–194
  • Jollow D. J., Mitchell J. R., Potter W. Z., Davis D. C., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J. Pharmacol. Exp. Ther. 1973; 187: 195–202
  • Potter W. Z., Davis D. C., Mitchell J. R., Jollow D. J., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. III. Cytochrome P-450-mediated covalent binding in vivo. J. Pharmacol. Exp. Ther. 1973; 187: 203–210
  • Mitchell J. R., Jollow D. J., Potter W. Z., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmacol. Exp. Ther. 1973; 187: 211–217
  • Jollow D. J., Thorgeirsson S. S., Potter W. Z., Hashimoto M., Mitchell J. R. Acetaminophen-induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen. Pharmacology 1974; 12: 251–271
  • Hinson J. A., Pohl L. R., Gillette J. R. N-Hydroxyacetamino-phen: A microsomal metabolite of N-hydroxypenacetin but apparently not acetaminophen. Life Sci. 1979; 24: 2133–2138
  • Nelson S. D., Forte A. J., Dahlin D. C. Lack of evidence for AMiydroxyacetaminophen as a reactive metabolite of acetaminophen in vitro. Biochem. Pharmacol 1980; 29: 1617–1620
  • Miner D. J., Kissinger P. T. Evidence for the involvement of N-acetyl-p-benzoquinone imine in acetaminophen metabolism. Biochem. Pharmacol. 1979; 28: 3285–3290
  • Corcoran G. B., Mitchell J. R., Vaishnav Y. N., Horning E. C. Evidence that acetaminophen and N-hydroxyacetaminophen form a common arylating intermediate. N-acetyl-p-benzoquinone imine, Mol. Pharmacol 1980; 18: 536–542
  • Dahlin D. C., Miwa G. T., Lu A. Y. H., Nelson S. D. N-Acetyl-p-benzoquinone imine: A cytochrome P-450-mediated oxidation product of acetaminophen. Proc. Natl. Acad. Sci. USA 1984; 81: 1327–1331
  • Harvison P. J., Guengerich G. P., Rashed M. S., Nelson S. D. Cytochrome P-450 isozyme selectivity in the oxidation of acetaminophen. Chem. Res. Toxicol. 1988; 1: 47–52
  • Dahlin D. C., Nelson S. D. Synthesis, decomposition kinetics and preliminary toxicological studies on pure N-acetyl-p-benzoquinone imine, a proposed toxic metabolite of acetaminophen. J. Med. Chem. 1982; 25: 885–886
  • Holme J. A., Dahlin D. C., Nelson S. D., Dybing E. Cytotoxic effects of N-acetyl-p-benzoquinone imine, a common arylating intermediate of paracetamol and N-hydroxy-paracetamol. Biochem. Pharmacol. 1984; 33: 401–406
  • Blair I. A., Boobis A. R., Davies D. J., Cresp T. M. Paracetamol oxidation: Synthesis and reactivity of iV-acetyl-p-benzo-quinone imine. Tetrahedron Lett. 1980; 21: 4947–4950
  • Albano E., Rundgren M., Harvison P. J., Nelson S. D., Moldeus P. Mechanisms of N-acetyl-p-benzoquinone imine cytotoxicity. Mol. Pharmacol. 1985; 280: 306–311
  • Morgan E. T., Koop D. R., Coon M. J. Comparisons of six rabbit liver cytochrome P-450 isozymes in formation of a reactive metabolite of acetaminophen. Biochem. Biophys. Res. Commun 1983; 112: 8–13
  • Steele C. M., Masson H. A., Batterskill J. M., Gibson G. G., Ioannides C. Metabolic activation of paracetamol by highly purified forms of cytochrome P-450. Res. Commun. Chem. Pathol. Pharmacol. 1983; 40: 109–119
  • Raucy J. L., Lasker J. M., Lieber C. S., Black M. Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2. Arch. Biochem. Biophys. 1989; 271: 270–283
  • Patten C. J., Thomas P. E., Guy R. L., Lee M., Gonzalez F. J., Guengerich F. P., Yang C. S. Cytochrome P450 Enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics. Chem. Res. Toxicol. 1993; 6: 511–518
  • Lee C. A., Thummel K. E., Kalhorn T. F., Nelson S. D., Slattery J. T. Inhibition and activation of acetaminophen-reactive metabolite formation by caffeine: Roles of cytochrome P-450 1A2 and 3A2. Drug Metab. Dispos. 1991; 19: 348–353
  • Thummel K. E., Lee C. A., Kunze K. L., Nelson S. D., Slattery J. T. Oxidation of acetaminophen to N-acetyl-p-aminobenzo-quinone imine by human CYP3A4. Biochem. Pharmacol. 1993; 45: 1563–1569
  • Ryan D. E., Koop D. R., Thomas P. E., Coon M. J., Levin W. Evidence that isoniazid and ethanol induce the same microsomal cytochrome P-450 in rat liver, an isozyme homologous to rabbit liver cytochrome P-450 isozyme 3a. Arch. Biochem. Biophys. 1986; 246: 633–644
  • McClain C. J., Kromhout J. P., Peterson F. J., Holtzman J. L. Potentiation of acetaminophen hepatotoxicity by alcohol. J. Am. Med. Assoc 1980; 244: 251–253
  • Hall A. H., Kulig K. W., Rumack B. H. Acetaminophen hepatotoxicity in alcoholics,. Ann. Intern. Med. 1986; 105: 624
  • Seeff L. B., Cuccherini B. A., Zimmerman H. J., Adler E., Benjamin S. B. Acetaminophen hepatotoxicity in alcoholics: A therapeutic misadventure. Ann. Intern. Med. 1986; 104: 399–404
  • Murphy R., Swarz R., Watkins P. B. Severe acetaminophen toxicity in a patient receiving isoniazid. Ann. Intern. Med. 1990; 113: 799–800
  • Zand R., Nelson S. D., Slattery J. T., Thummel K. E., Kalhorn T. F., Adams S. P., Wright J. M. Inhibition and induction of cytochrome P450 2E1-catalyzed oxidation by isoniazid in humans. Clin. Pharm. Ther. 1993; 54: 142–149
  • Nolan C. M., Sandblom R. E., Thummel K. E., Slattery J. T., Nelson S. D. Hepatotoxicity associated with acetaminophen usage in patients receiving multiple drug therapy for tuberculosis. Chest 1994; 105: 408–411
  • Knox J. H., Jurand J. Determination of paracetamol and its metabolites in urine by high-performance liquid chromatography using reversed-phase bonded supports. J. Chromatogr. 1977; 142: 651–670
  • Hinson J. A., Pohl L. R., Monks T. J., Gillette J. R., Guengerich F. P. 3-Hydroxyacetaminophen: A microsomal metabolite of acetaminophen. Drug Metab. Dispos. 1980; 8: 289–294
  • Forte A. J., Wilson J. M., Slattery J. T., Nelson S. D. The formation and toxicity of catechol metabolites of acetaminophen in mice. Drug Metab. Dispos. 1984; 12: 484–491
  • van de Straat R., de Vries J., de Boer H. J. R., Vromans R. M., Vermeulen N. P. E. Relationship between paracetamol binding to and its oxidation by two cytochrome P450 isozymes—A proton nuclear magnetic resonance and spectrophotometric study. Xenobiotica 1987; 17: 1–9
  • Koymans L., van Lenthe J. H., van de Straat R., Donne-op den Kelder G. M., Vermeulen N. P. E. A theoretical study on the metabolic activation of paracetamol by cytochrome P450: Indications of a uniform mechanism. Chem. Res. Toxicol. 1989; 2: 60–66
  • Hinson J. A., Mitchell J. R. N-Hydroxylation of phenacetin by hamster liver microsomes. Drug Metab. Dispos. 1976; 4: 430–435
  • Astrom A., DePierre J. W. Metabolism of 2-acetylamino-fluorene by eight different forms of cytochrome P450 isolated from liver. Carcinogenesis 1985; 6: 113–120
  • McManus M. E., Burgess W. M., Veronese M. E., Huggett A., Quattrochi L. C., Tukey R. H. Metabolism of 2-acetylamino-fluorene and benzo[a]pyrene and activation of food-derived heterocyclic mutagens by human cytochromes P450. Cancer Res. 1990; 50: 3367–3376
  • Loew G. H., Goldblum A. Metabolic activation and toxicity of acetaminophen and related analogs. Mol. Pharmacol. 1985; 27: 375–386
  • Myers T. G., Thummel K. E., Kalhorn T. F., Nelson S. D. Preferred orientations in the binding of 4′-hydroxyacetanilide (acetaminophen) to cytochrome P450 1A1 and 2B1 isoforms as determined by 13C- and l5N-NMR relaxation studies. J. Med. Chem. 1994; 37: 860–867
  • Guengerich F. P., Macdonald T. L. Chemical mechanisms of catalysis by cytochromes P-450: A unified view. Ace. Chem. Res. 1984; 17: 9–16
  • Ortiz de Montellano P. R. Cytochrome P-450 catalysis: Radical intermediates and dehydrogenation reactions. Trends Pharmacol. Sci. 1989; 10: 354–359
  • White R. E. The involvement of free radicals in the mechanisms of monooxygenases. Pharmacol. Ther. 1991; 49: 21–42
  • Baillie T. A., Tirmenstein M. A., Nelson S. D., unpublished results
  • Raag R., Poulos T. L. Crystal structures of cytochrome P450cam complexed with camphane, thiocamphor, and adamantane: Factors controlling P450 substrate hydroxylation. Biochemistry 1991; 30: 2674–2684
  • Crull G. B., Kennington J. W., Garber A. R., Ellis P. D., Dawson J. H. 19F-Nuclear magnetic resonance as a probe of the spatial relationship between the heme iron of cytochrome P450 and its substrate. J. Biol. Chem. 1989; 264: 2649–2655
  • Streeter A. J., Dahlin D. C., Nelson S. D., Baillie T. A. The covalent binding of acetaminophen to protein: Evidence for cysteine residues as major sites of arylation in vitro. Chem.-Biol. Interact 1984; 48: 349–366
  • Hoffman K.x K.-, Streeter A. J., Axworthy D. B., Baillie T. A. Identification of the major covalent adduct formed in vitro and in vivo between acetaminophen and mouse liver proteins. Mol. Pharmacol. 1985; 27: 566–573
  • Potter D. W., Pumford N. R., Hinson J. A., Benson R. W., Roberts D. W. Epitope characterization of acetaminophen bound to protein and nonprotein sulfhydryl groups by an enzyme-linked immunosorbent assay. J. Pharmacol. Exp. Ther. 1989; 248: 182–189
  • Nelson S. D., Vaishnav Y., Kambara H., Baillie T. A. Comparative EI, CI and FD mass spectra of some thioether metabolites of acetaminophen. Biomed. Mass Spectrum. 1981; 8: 244–251
  • Hinson J. A., Monks T. J., Hong M., Highet R. J., Pohl L. R. 3-(GIutathion-S-yl)acetaminophen: A biliary metabolite of acetaminophen. Drug Metab. Dispos. 1982; 10: 47–50
  • Rashed M. S., Myers T. G., Nelson S. D. Hepatic protein arylation, glutathione depletion, and metabolite profiles of acetaminophen and a non-hepatotoxic regioisomer, 3′-hydroxyacetanilide, in the mouse. Drug Metab. Dispos. 1990; 18: 765–770
  • Tirmenstein M. A., Nelson S. D. Subcellular binding effects on calcium homeostasis produced by acetaminophen and a non-hepatotoxic regioisomer, 3′-hydroxyacetanilide. J. Biol. Chem. 1989; 264: 9814–9819
  • Roberts S. A., Price V. F., Jollow D. J. Acetaminophen struc-ture-toxicity studies: In vivo covalent binding of a nonhepatotoxic analog, 3-hydroxyacetanilide. Toxicol. Appl. Pharmacol. 1990; 105: 195–208
  • Ramsay R. P., Rashed M. S., Nelson S. D. In vitro effects of acetaminophen metabolites and analogs on the respiration of mouse liver mitochondria. Arch. Biochem. Biophys. 1989; 273: 449–457
  • Holme J. A., Hongslo J. K., Bjarge C., Nelson S. D. Comparative cytotoxic effects of acetaminophen (N-acetyl-p-aminophenol), a non-hepatotoxic regioisomer acetyl-m-aminophenol and their postulated reactive hydroquinone and quinone metabolites in monolayer cultures of mouse hepatocytes. Biochem. Pharmacol 1991; 42: 1137–1142
  • Tirmenstein M. A., Nelson S. D. Hepatotoxicity after 3′-hydroxyacetanilide administration to buthionine sulfoximine pre-treated mice. Chem. Res. Toxicol. 1991; 4: 214–217
  • Dixon M. F., Dixon B., Aparicio S. R., Loney D. P. Experimental paracetamol-induced hepatic necrosis: A light- and electron-microscope, and histochemical study. J. Pathol 1975; 116: 17–29
  • Walker R. M., Racz W. S., McElligott M. D. Acetaminophen-induced hepatotoxicity in mice. Lab. Invest. 1980; 42: 181–189
  • Meyers L. L., Beierschmitt W. P., Khairallah E. A., Cohen S. D. Acetaminophen-induced inhibition of hepatic mitochondrial respiration in mice. Toxicol. Appl. Pharmacol. 1988; 93: 378–387
  • Katyare S. S., Satav J. G. Impaired mitochondrial oxidative energy metabolism following paracetamol-induced hepatotoxicity in the rat. Br. J. Pharmacol. 1989; 96: 51–58
  • Burcham P. C., Harman A. W. Acetaminophen toxicity results in site-specific mitochondrial damage in isolated mouse hepatocytes. J. Biol. Chem. 1991; 266: 5049–5054
  • Bartalone J. B., Sparks K., Cohen S. D., Khairallah E. A. Immunochemical detection of acetaminophen-bound liver proteins. Biochem. Pharmacol. 1987; 36: 1193–1196
  • Roberts D. W., Pumford N. R., Potter D. W., Benson R. W., Hinson J. A. A sensitive immunochemical assay for acetamino-phen-protein adducts. J. Pharmacol. Exp. Ther. 1987; 241: 527–533
  • Pumford N. R., Martin B. M., Hinson J. A. A metabolite of acetaminophen covalently binds to the 56 kDa selenium binding protein. Biochem. Biophys. Res. Commun. 1992; 182: 1348–1355
  • Bartalone J. B., Birge R. B., Bulera S. J., Bruno M. K., Nishanian E. U., Cohen S. D., Khairallah E. A. Purification, antibody production, and partial amino acid sequence of the 58-kDa ac-etaminophen-binding liver proteins. Toxicol. Appl. Pharmacol. 1992; 113: 19–29
  • Tirmenstein M. A., Nelson S. D. Acetaminophen-induced oxidation of protein thiols: Contribution of impaired thiol metabolizing enzymes to the breakdown of adenine nucleotides. J. Biol. Chem. 1990; 265: 3059–3065
  • Dietze E. C., Schafer A., Omichinski J. O., Nelson S. D.
  • Dietz E. C., Schäfer A, Nelson S. D. Inactivation of glycer-aldehyde-3-phosphate dehydrogenase (GAPDH) by N-acetyl-p-benzo-quinone imine (NAPQI). The Toxicologist (Abs.) 1992; 12: 288
  • Labadorios D., David M., Portmann B., Williams R. Paracetamol-induced hepatic-necrosis in the mouse: Relationship between covalent binding, hepatic glutathione depletion and the protective effect of alpha-mercaptopropionyl glycine. Biochem. Pharmacol. 1977; 26: 31–35
  • Moore M., Thor H., Moore G., Nelson S., Moldeus P., Orrenius S. The toxicity of acetaminophen and N-acetyl-p-benzo-quinone imine in isolated hepatocytes is associated with thiol depletion and increased cytosolic Ca2+. J. Biol. Chem 1985; 260: 13035–13040
  • Tee L. B. G., Boobis A. R., Hugett A. C., Davies D. S. Reversal of acetaminophen toxicity in isolated hamster hepatocytes by dithiothreitol. Toxicol. Appl. Pharmacol. 1986; 83: 294–314
  • Jaeschke H. Glutathione disulfide formation and oxidant stress during acetaminophen-induced hepatotoxicity in mice in vivo: The protective effect of allopurinol. J. Pharmacol. Exp. Ther. 1990; 255: 935–941
  • Nelson S. D., Tirmenstein M. A., Rashed M. S., Myers T. G. Acetaminophen and protein thiol oxidation. 579–588, in Ref. 6
  • Coles B., Wilson I., Wardman P., Hinson J. A., Nelson S. D., Ketterer B. The spontaneous and enzymic reaction of N-acetyl-p-benzoquinone imine with glutathione. Arch. Biochem. Biophys. 1988; 264: 253–260
  • Fernando C. R., Calder I. C., Ham K. N. Studies on the mechanism of toxicity of acetaminophen: Synthesis and reactions of N-acetyl-2,6-dimethyl- and N-acetyl-3,5-dimethyl-p-benzoquinone imines. J. Med. Chem. 1980; 23: 1153–1158
  • Rundgren M., Porubek D. J., Harvison P. J., Cotgreave I. A., Moldeus P., Nelson S. D. Comparative cytotoxic effects of N-acetyl-p-benzoquinone imine and two dimethylated analogues. Mol. Pharmacol 1988; 34: 566–572
  • Birge R. B., Bartalone J. B., Cohen S. D., Khairallah E. A., Smolin L. A. A comparison of proteins 5-thiolated by glutathione to those arylated by acetaminophen. Biochem. Pharmacol. 1991; 42: 5197–5207
  • Wendel A., Feuerstein S., Konz K. -H. Acute paracetamol intoxication of starved mice leads to lipid peroxidation in vivo. Biochem. Pharmacol 1979; 28: 2051–2055
  • Fairhurst S., Barber D. J., Clark B., Horton A. A. Studies on paracetamol-induced lipid peroxidation. Toxicology 1982; 23: 249–259
  • Albano E., Poli G., Charpotto E., Biasi F., Dianzani M. U. Paracetamol-stimulated lipid peroxidation in isolated rat and mouse hepatocytes. Chem.-Biol. Interact. 1983; 47: 249–263
  • Kyle M. E., Miccadei S., Nakae D., Farber J. L. Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminphen. Biochem. Biophys. Res. Commun. 1987; 149: 889–896
  • Burk R. F., Lane J. M. Ethane production and liver necrosis in rats after administration of drugs and other chemicals. Toxicol. Appl. Pharmacol. 1979; 50: 467–478
  • Kamiyama T., Sato C., Liu J., Tajin K., Miyakawa H., Marumo F. Role of lipid peroxidation in acetaminophen-induced hepa-totoxicity: Comparison with carbon tetrachloride. Toxicol. Lett. 1993; 66: 7–12
  • Younes M., Siegers C. -P. The role of iron in the paracetamol-and CCl4-induced lipid peroxidation and hepatotoxiciry. Chem.-Biol. Interact. 1985; 55: 327–334
  • Younes M., Sause C., Siegers C. -P., Lemoine R. Effect of deferrioxamine and diethyldithiocarbamate on paracetamol-induced hepato- and nephrotoxicity. The role of lipid peroxidation. J. Appl. Toxicol. 1988; 8: 261–265
  • Beales D., Hue D. P., McLean A. E. M. Lipid peroxidation, protein synthesis and protection by calcium EDTA in paracetamol injury to isolated hepatocytes. Biochem. Pharmacol. 1985; 34: 19–23
  • Porubek D. J., Rundgren M., Harvison P. J., Nelson S. D., Moldéus P. Investigation of mechanisms of acetaminophen hepato-toxicity in isolated rat hepatocytes with the acetaminophen analogues 3,5-dimethylacetaminophen and 2,6-dimethylacetaminophen. Mol. Pharmacol. 1987; 31: 6457–6463
  • Garrido A., Arancibia C., Campos R., Valenzuela A. Acetaminophen does not induce oxidative stress in isolated rat hepatocytes: Its probable antioxidant effect is potentiated by the flavanoid silybin. Pharmacol. Toxicol. 1991; 69: 9–12
  • Farber J. L., Leonard T. B., Kyle M. E., Nakae D., Serroni A., Rogers S. A. Peroxidation-dependent and peroxidation-indepen-dent mechanisms by which acetaminophen kills cultured rat hepatocytes. Arch. Biochem. Biophys. 1988; 267: 640–650
  • Rosen G. M., Singletary W. V., Jr., Rauckman E. J., Killenberg P. G. Acetaminophen hepatotoxicity. An alternative mechanism. Biochem. Pharmacol. 1983; 32: 2053–2059
  • Powis G., Svingen B. A., Dahlin D. C., Nelson S. D. Enzymatic and non-enzymatic reduction of N-acetyl-p-benzoquinone imine and some properties of the N-acetyl-p-benzoquinone imine radical. Biochem. Pharmacol. 1984; 33: 2367–2370
  • Fischer V., West P. R., Nelson S. D., Harvison P. J., Mason R. P. Formation of 4-aminophenoxyl free radical from the acetaminophen metabolite N-acetyl-p-benzoquinone imine. J. Biol. Chem. 1985; 260: 11446–11450
  • Bisby R. H., Tabassum N. Properties of the radicals formed by one-electron oxidation of acetaminophen—A pulse-radiolysis study. Biochem. Pharmacol. 1988; 37: 2731–2738
  • Ross D., Albano E., Nilsson U., Moldeus P. Thiyl radicals-Formation during peroxidase-catalyzed metabolism of acetaminophen in the presence of thiols. Biochem. Biophys. Res. Commun. 1984; 125: 109–115
  • Laskin D. L., Pilaro A. M. Potential role of activated macrophages in acetaminophen hepatotoxcity. Toxicol. Appl. Pharmacol 1986; 86: 204–215
  • Jaeschke H., Mitchell J. R. Neutrophil accumulation exacerbates acetaminophen-induced liver injury. FASEB J. 1989; 3: A920
  • van de Straat R., de Vries J., Vermeulen N. P. E. Role of hepatic microsomal and purified cytochrome P-450 in one-electron reduction of two quinone imines and concomitant reduction of molecular oxygen. Biochem. Pharmacol. 1987; 36: 613–619
  • Elsisi A. E. D., Hall P., Sim W. -L. W., Earnest D. L., Sipes I. G. Characterization of vitamin A potentiation of carbon tetrachlo-ride-induced liver injury. Toxicol. Appl. Pharmacol. 1993; 9: 280–288
  • Nakae D., Yamamoto K., Yoshiji H., Kinugasa T., Maruyama H., Farber J. L., Konishi Y. Liposome-encapsulated superoxide dismutase prevents liver necrosis induced by acetaminophen. Am. J. Pathol. 1990; 136: 787–795
  • Ray S. D., Sorge C. L., Raucy J. L., Corcoran G. B. Early loss of large genomic DNA in vivo with accumulation of Ca2+ in the nucleus during acetaminophen-induced liver injury. Toxicol. Appl. Pharmacol. 1990; 106: 346–351
  • Shen W., Kamendulis L. M., Ray S. D., Corcoran G. B. Acetaminophen-induced cytotoxicity in cultured mouse hepatocytes: Effects of Ca2+ endonuclease, DNA repair, and glutathione depletion inhibitors on DNA fragmentation and cell death. Toxicol. Appl. Pharmacol. 1992; 112: 32–40
  • Ray S. D., Kamendulis L. M., Gurule M. W., Yorkin R. D., Corcoran G. B. Ca2+ antagonists inhibit DNA fragmentation and toxic cell death induced by acetaminophen. FASEB J. 1993; 7: 453–463
  • Tsokos-Kuhn J. O., Todd E. L., McMillin-Wood J. B., Mitchell J. R. ATP-dependent calcium uptake by rat liver plasma membrane vesicles: Effect of alkylating hepatotoxins in vivo. Mol. Pharmacol. 1985; 28: 56–61
  • Boobis A. R., Seddon C. E., Nasseri-Sina P., Davies D. S. Evidence for a direct role of intracellular calcium in paracetamol toxicity. Biochem. Pharmacol. 1990; 39: 1277–1281
  • Nicotera P., Rundgren M., Porubek D. J., Cotgreave I., Moldeus P., Orrenius S., Nelson S. D. On the role of Ca2+ in the toxicity of alkylating and oxidizing quinone imines in isolated hepatocytes. Chem. Res. Toxicol. 1989; 2: 46–50
  • Corcoran G. B., Wong B. K., Neese B. L. Early sustained rise in total liver calcium during acetaminophen toxicity in mice. Res. Commun. Chem. Pathol. Pharmacol. 1987; 58: 291–305
  • Tsokos-Kuhn J. O. Evidence in vivo for elevation of intracellular free Ca2+ in the liver after diquat, acetaminophen, and CC14. Bio-chem. Pharmacol 1989; 38: 3061–3065
  • Landon E. J., Naukam R. J., Sastry B. V. Effects of calcium channel blocking agents on calcium and centrilobular necrosis in the liver of rats treated with hepatotoxic agents. Biochem. Pharmacol. 1986; 35: 697–705
  • Thibault N., Peytavin G., Claude J. R. Calcium channel blocking agents protect against acetaminophen-induced cytotoxicity in rat hepatocytes. J. Biochem. Toxicol. 1991; 6: 237–239
  • Harman A. W., Mahar S. O., Burcham P. C., Madsen B. W. Level of cytosolic free calcium during acetaminophen toxicity in mouse hepatocytes. Mol. Pharmacol 1992; 41: 665–670
  • Hardwick S. J., Wilson J. W., Fawthrop D. J., Boobis A. R., Davies D. S. Paracetamol toxicity in hamster isolated hepatocytes: The increase in cytosolic calcium accompanies, rather than precedes, loss of viability. Arch. Toxicol 1992; 66: 408–412
  • Fawthrop D. J., Boobis A. R., Davies D. S. Mechanisms of cell death. Arch. Toxicol 1991; 65: 437–444
  • Corcoran G. B., Ray S. The role of the nucleus and other compartments in toxic cell death produced by alkylating hepa-totoxicants. Toxicol. Appl. Pharmacol 1992; 113: 167–183
  • Grundschober F. Literature review of pulegone. Perfum. Flavor 1979; 4: 15–17
  • Hall R. A., Oser B. L. Recent progress in the consideration of flavoring ingredients under the food additives amendment III GRAS substances. Food Technol 1965; 19: 253–271
  • Jacobs M. L., Burlage H. M. Index of Plants of North Carolina with Reputed Medicinal Uses. 1958; 112–113
  • Rose J. Herbs and Things. Grosset and Dunlap, New York 1972; 50
  • Farnsworth N. R., Bingell A. S., Cordell G. A., Crane F. A., Fong H. H. S. Potential value of plants as sources of new anti-fertility agents, I. J. Pharm. Scl 1975; 64: 535–598
  • Riddle J. M., Estes J. W. Oral contraceptives in ancient and medieval times. Am. Scl 1992; 80: 226–233
  • Gleason M. N., Gosselin R. E., Hodge H. C., Smith R. P. Clinical Toxicology of Commercial Products 3rd ed. Williams and Wilkins, Baltimore 1969; 109
  • Watt J. M., Breyer-Brandwijk M. G. The Medicinal and Poisonous Plants of Southern and Eastern Africa 2nd ed. E. and S. Livingston, London 1962; 523
  • Vallance W. B. Pennyroyal oil poisoning: A fatal case. Lancet 1955; ii: 850–851
  • Gunby P. Plant known for centuries still causes problems today. J. Am. Med. Assoc 1979; 241: 2246–2247
  • Sullivan J. B., Rumack B. H., Thomas H., Peterson R. G., Brysch P. Pennyroyal oil poisoning and hepatotoxicity. J. Am. Med. Assoc. 1979; 242: 2873–2874
  • Gold J., Cates W. Herbal abortifacients. J. Am. Med. Assoc 1980; 243: 1365–1366
  • Gordon W. P., Forte A. J., McMurtry R. J., Gal J., Nelson S. D. Hepatotoxicity and pulmonary toxicity of pennyroyal oil and its constituent terpenes in the mouse. Toxicol. Appl. Pharmacol. 1982; 65: 413–424
  • Mizutani T., Nomura H., Nakanishi K., Fujita S. Effects of drug metabolism modifiers on pulegone-induced hepatotoxicity in mice. Res. Commun. Chem. Pathol. Pharmacol. 1987; 58: 75–83
  • Thomasson D., Slattery J. T., Nelson S. D. Contribution of menthofiiran to the hepatotoxicity of pulegone: Assessment based on matched area under the curve and on matched time course. J. Pharmacol. Exp. Then 1988; 224: 825–829
  • Moorthy B., Madyastha P., Madyastha K. M. Hepatotoxicity of pulegone in rats: Its effects on microsomal enzymes. in vitro, Toxicology 1989; 55: 327–337
  • Nelson S. D., Gordon W. P. Mammalian drug metabolism. J. Nat. Prod. 1983; 46: 71–78
  • Gordon W. P., Huitric A. C., Seth C. L., McClanahan R. H., Nelson S. D. The metabolism of the abortifacient terpene, (R)-(+)-pulegone, to a proximate toxin, menthofiiran. Drug Metab. Dispos. 1987; 15: 589–594
  • Moorthy B., Madyastha P., Madyastha K. M. Metabolism of a monoterpene ketoneR-(+)-pulegone, a hepatotoxin in rat. Xeno-biotica 1989; 19: 217–224
  • Madyastha K. M., Raj C. P. Studies on the metabolism of a monoterpene ketone, (R)-(+)-pulegone—a hepatotoxin in rat: Isolation and characterization of new metabolites. Xenobiotica 1993; 23: 509–518
  • Madyastha K. M., Moorthy B. Pulegone mediated hepatotoxicity: Evidence for covalent binding of (R)-(+)-[14C]pulegone to microsomal proteins in vitro. Chem.-Biol. Interact. 1989; 72: 325–333
  • McClanahan R. H., Huitric A. C., Pearson P. G., Desper J. C., Nelson S. D. Evidence for a cytochrome P-450 catalyzed al-lylic rearrangement with double bond topomerization. J. Am. Chem. Soc 1988; 110: 1979–1981
  • Nelson S. D., McClanahan R. H., Thomassen D., Gordon W. P., Knebel N. Investigations of mechanisms of reactive metabolite formation from (R)-(+)-pulegone. Xenobiotica 1992; 22: 1157–1164
  • Thomassen D., Pearson P. G., Slattery J. T., Nelson S. D. Partial characterization of biliary metabolites of pulegone by tandem mass spectrometry: Detection of glucuronide, glutathione, and gluta-thionyl glucuronide conjugates. Drug Metab. Dispos. 1991; 19: 997–1003
  • McClanahan R. H., Thomassen D., Slattery J. T., Nelson S. D. Metabolic activation of (R)-(+)-pulegone to a reactive enonal that covalently binds to mouse liver proteins. Chem. Res. Toxicol 1989; 2: 349–355
  • Madyastha K. M., Raj C. P. Biotransformation of R-(+)-pule-gone and menthofuran in vitro: Chemical basis for toxicity,. Bio-chem. Biophys. Res. Commun. 1990; 173: 1086
  • Thomassen D., Knebel N., Slattery J. T., McClanahan R. H., Nelson S. D. Reactive intermediates in the oxidation of menthofuran by cytochromes P-450. Chem. Res. Toxicol. 1992; 5: 123–130
  • Madyastha K. M., Raj C. P. Metabolic fate of menthofuran in rats: Novel oxidative pathways. Drug Metab. Dispos. 1992; 20: 295–301
  • Oishi S., Nelson S. D. Evidence for the formation of heterocyclic arene oxides and a γ-ketoenal by reaction of menthofuran with dimethyldioxirane. J. Org. Chem. 1992; 57: 2744–2747
  • Oishi S., Nelson S. D., unpublished results
  • Skiles G. L., Oishi S., Nelson S. D. Epitope characterization of an anti-menthofuran antibody and the use of the antibody in identification of rat hepatic protein menthofuran adducts,. Toxicologist 1994; 14: 112
  • Williams A. T., Burk R. F. Carbon tetrachloride hepatotoxicity: An example of free radical-mediated injury. Semin. Liver Dis. 1990; 10: 279–284
  • Lau S. S., Monks T. J. The contribution of bromobenzene to our current understanding of chemically-induced toxicities. Life Sci. 1988; 42: 1259–1269
  • Slaughter D. E., Hanzlik R. P. Identification of epoxide-and quinone-derived bromobenzene adducts to protein sulfur nucleo-philes. Chem. Res. Toxicol. 1991; 4: 349–359
  • Rombach E. M., Zheng J., Hanzlik R. P. Covalent binding of epoxide and quinone bromobenzene metabolites to proteins: Recognition and discrimination with specific antibodies,. Toxicologist 1994; 14: 429
  • Rao K. S., Recknagel R. O. Early incorporation of carbon-labeled carbon tetrachloride into rat liver particulate lipids and proteins. Exp. Mol. Pathol. 1969; 10: 219–228
  • Smith C. V. Evidence for participation of lipid peroxidation and iron in diquat-induced hepatic necrosis in vivo. Mol. Pharmacol. 1987; 32: 417–422
  • Keller R. J., Halmes N. C., Hinson J. A., Pumford N. R. Immunochemical detection of oxidized proteins. Chem. Res. Toxicol. 1993; 6: 430–433

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.