21
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Acinar Factors in Drug Processing: Protein Binding, Futile Cycling, and Cosubstrate

Pages 325-368 | Published online: 22 Sep 2008

References

  • Pang K. S., Gillette J. R. Kinetics of metabolite formation and elimination in the perfused rat liver preparation: Differences between the elimination of preformed acetaminophen and acetaminophen formed from phenacetin. J. Pharmacol. Exp. Ther. 1978; 207: 178–194
  • Keiding S., Chiarantini E. Effect of sinusoidal perfusion on galactose elimination in perfused rat liver. J. Pharmacol. Exp. Ther. 1978; 205: 465–470
  • Byrne A. J., Morgan D. J., Harrison P. M., McLean A. J. Variation in hepatic extraction ratio with unbound drug fraction: Discrimination between models of hepatic drug elimination. J. Pharm. Sci. 1985; 74: 205–207
  • Jones A. L., Hradek G. T., Renston R. H., Wong K. Y., Karl-aganis G., Paumgartner G. Autoradiographic evidence for hepatic lobular concentration gradient of bile acid derivative. Am. J. Physiol 1980; 238: G233–G237
  • Gumucio J. J., Miller D. L., Krauss M. D., Zanolli C. C. Transport of fluorescent compounds into hepatocytes and the resultant zonal labeling of the hepatic acinus in the rat. Gastroenterology 1981; 80: 639–646
  • Goresky C. A., Groom A. C. Microciculatory events in the liver and the spleen. Handbook of Physiology–The cardiovascular System IV. Am. Physiol. Soc, Washington, DC 1984; 689–780
  • Pang K. S., Xu X. Drug metabolism factors in drug discovery and design. Pharmacokinetics: Regulatory-Industrial-Aca-demic Perspectives, P. G. Welling, F. L.-S. Tse. Dekker, New York 1988; 383–447
  • Pang K. S., Chiba M. Pharmacokinetic modeling of drug conjugates. Handbook of Experimental Pharmacology, F. C. Kauffman. Springer-Verlag. 1994; Vol. 112: 257–309
  • Goresky C. A., Schwab A. J., Pang K. S. Kinetic models of transport at the cellular level. Hepatic Transport and Bile Secretion, N. Tavoloni, P. D. Berk. Raven Press. 1993; 11–53
  • Pang K. S., Chiba M. Metabolism: Scaling up from in vitro to organ and whole body. Handbook of Experimental Pharmacology, P. G. Welling, L. P. Balant. Springer-Verlag, Stuttgart 1994; 101–187
  • Goresky C. A., Schwab A. J., Pang K. S.Flow, cell entry, metabolic disposal and product formation in the liver. The Liver. Biology and Pathobiology 3rd ed., I. A. Arias, J. Boyer, N. Fausto, W. Jakoby, D. Schachter, D. Shafritz. Raven Press, New York 1994; 1107–1141
  • Goresky C. A., Bach G. G., Schwab A. J. Distributed-in-space product formation in vivo: linear kinetics. Am. J. Physiol, 264 (Heart Cir. Physiol., 33) 1993; H2007–H2028
  • Almond N. E., Wheatley A. M. Measurement of hepatic perfusion in rats by laser Doppler flowmetry. Am. J. Physiol. 262 (Gastrointest Liver Physiol., 25) 1992; G203–G209
  • Sherman I. A., Pappas S. C., Fisher M. M. Hepatic microvascular changes associated with liver fibrosis and cirrhosis. Am. J. Physiol. 1990; 258: H460–H465, (Herat Circ. Physiol., 27)
  • Pang K. S., Sherman I. A., Schwab A. J., Xu N., Barker F., III, Dlugosz J. A., Cuerrier G., Goresky C. A. Role of the hepatic artery in the metabolism of phenacetin and acetaminophen: An intravital microscopic and multiple indicator dilution study in perfused rat liver. Hepatology 1994; 20: 672–683
  • Baron J., Redick R. A., Guengerich F. P. An immunohisto-chemical study on the localizations and distributions of phenobar-bital- and 3-methylcholanthrene-inducible cytochrome P-450 within the livers of untreated rats. J. Biol. Chem. 1982; 256: 15200–15203
  • Pang K. S., Terrell J. A. Retrograde perfusion to probe the heterogeneous distribution of hepatic drug metabolizing enzymes in rats. J. Pharmacol. Exp. Ther. 1981; 216: 339–346
  • Redick J. A., Jakoby W. B., Baron J. Immunohistochemical localization of glutathione-S-transferase in livers of untreated rats. J. Biol. Chem. 1982; 257: 15200–15203
  • Murray G. I., Burke M. D., Ewen S. W. B. Glutathione lozalization by a novel o-phthaladehyde histofluorescence method. Histochem. J. 1986; 18: 434–440
  • Boyer J. L., Elias E., Layden T. J. The paracellular pathway and bile formation. Yale J. Biol. Med. 1979; 52: 61–67
  • Gumucio J. J., Balabaud C., Miller D. L., Demason L. F., Appleman H. D., Stoecker T. J., Franzblau D. R. Bile secretion and liver cell heterogeneity in the rat. J. Lab. Clin. Med. 1978; 91: 350–362
  • Bass N. M., Barker M. E., Manning J. A., Jones A. L., Ockner R. K. Acinar heterogeneity of fatty acid binding protein expression in livers of male, female, and clofibrate-treated rats. Hepatology 1989; 9: 12–21
  • Xu X., Selick P., Pang K. S. Nonlinear protein binding and heterogeneity of drug metabolizing enzyme on hepatic drug removal. J. Pharmacokinet. Biopharm 1993; 21: 43–74
  • Burger H. J., Gebhardt R., Mayer C., Mecke D. Different capacities for amino acid transport in periportal and perivenous hepatocytes isolated by digitonin/collagenase perfusion. Hepatology 1989; 9: 22–28
  • McFarlane B. M., Spios J., Gove C. D., McFarlane I. J., Williams R. Antibodies against the hepatic asialoglycoprotein receptor perfused in situ preferentially attach to periportal liver cells in the rat. Hepatology 1990; 11: 408–415
  • Wilkinson G. R. Clearance approaches in pharmacology. Pharmacol. Rev. 1987; 39: 1–47
  • Ratna S., Chiba M., Bandyopadhyay L., Pang K. S. Futile cycling between 4-methylumbelliferone and its conjugates in perfused rat liver. Hepatology 1993; 17: 838–853
  • St.-Pierre M. V., Lee P. I., Pang K. S. A comparative investigation of hepatic clearance models: predictions of metabolite formation and elimination. J. Pharmacokinet. Biopharm. 1992; 20: 105–145
  • Pang K. S., Koster H., Halsema I. C. M., Scholtens E., Mulder G. J., Stillwell R. N. Normal and retrograde perfusion to probe the zonal distribution of sulfation and glucuronidation activities of harmol in the perfused rat liver preparation. J. Pharmacol. Exp. Ther. 1983; 224: 647–653
  • Goresky C. A., Bach G. G., Schwab A. J. Distributed-in-space product formation in vivo: enzyme kinetics. Am. J. Physiol. 1993; 264: H2029–H2050, (Heart Cir. Physiol., 33)
  • Xu X., Tang B. K., Pang K. S. Sequential metabolism of salicylamide exclusively to gentisamide-5-glucuronide and not gentisamide sulfate conjugates in the single pass in situ perfused rat liver. J. Pharmacol. Exp. Ther. 1990; 253: 963–973
  • Pang K. S., Cherry W. F., Terrell J. A., Ulm E. H. Disposition of enalapril and its diacid metabolite, enalaprilat, in a perfused rat liver preparation: Presence of a diffusional barrier into hepatocytes. Drug Metab. Dispos. 1984; 12: 309–312
  • de Lannoy I. A. M., Pang K. S. A commentary: The presence of diffusional barriers on drug and metabolite kinetics: Enalaprilat as a generated versus preformed metabolite. Drug Metab. Dispos. 1986; 14: 513–520
  • Schwab A. J., Barker F., III, Goresky C. A., Pang K. S. Transfer of enalaprilat across rat liver cell membranes is barrier-limited. Am. J. Physiol. 1990; 258: G461–G475, (Gastrointest. Liver Physiol., 21)
  • Pang K. S., Terrell J. A. Conjugation kinetics of acetaminophen by the perfused rat liver preparation. Biochem. Pharmacol. 1981; 30: 1959–1965
  • Goresky C. A., Pang K. S., Schwab A. J., Barker F., III, Cherry W. F., Bach G. G. Uptake of a protein-bound, polar compound, acetaminophen sulfate, by perfused rat liver. Hepatology 1992; 15: 173–190
  • Morris M. E., Yuen V., Pang K. S. Competing pathways in drug metabolism. II. Enzymic systems for 2- and 5- sulfoconjugation are distributed anterior to S-glucuronidation in the metabolism of gentisamide by the perfused rat liver, J. Pharmacokinet. Biopharm. 1988; 16: 633–656
  • Xu X., Pang K. S. Hepatic modeling of metabolite kinetics in sequential and parallel pathways: salicylamide and gentisamide metabolism in perfused rat liver. J. Pharmacokinet. Biopharm 1989; 17: 645–671
  • Pang K. S., Cherry W. F., Barker F., III, Goresky C. A. Esterases for enalapril hydrolysis is concentrated in the perihepatic venous region of the rat liver. J. Pharmacol. Exp. Ther. 1991; 257: 294–301
  • Chiba M., Pang K. S. Effects of protein binding on 4-methyl-umbelliferyl sulfate desulfation kinetics in perfused rat liver. J. Pharmacol. Exp. Ther. 1993; 266: 492–499
  • Goresky C. A., Bach G. G., Nadeau B. E. On the uptake of materials by the intact liver: The transport and net removal of galactose. J. Clin. Invest. 1973; 52: 991–1009
  • Geng W. P., Poon K., Pang K. S. An understanding of flow-and barrier-limited versus carrier-mediated hepatic uptake: A simulation study. J. Pharmacokinet. Biopharm., accepted for publication
  • Wagner J. G., DiSanto A. R., Gillispie W. R., Albert K. S. Reversible metabolism and pharmacokinetics. Application to prednisone-prednisolone. Res. Commun. Chem. Pathol. Pharmacol. 1981; 32: 387–405
  • Ebling E. F., Jusko J. W. The determination of essential clearance, volume, and residence time parameters of recirculating metabolic systems: The reversible metabolism of methylprednisolone and methylprednisone in rabbits. J. Pharmacokinet. Biopharm. 1986; 14: 557–599
  • Duggan D. E., Hooke K. F., Risley E. A., Shen T. Y., van Arman C. G. Identification of the biologically active form of sulindac. J. Pharmacol. Exp. Ther. 1979; 201: 8–13
  • Migdalof B. H., Singhvi S. M., Kripalani K. J. Thin-layer radiochromatographic determination of captopril (SQ 14,225) and its disulfide dimer metabolite in blood. J. Liquid Chromatogr. 1980; 3: 857–865
  • Stec G., Rue T. I., Thenot J. -P., Atkinson A. T., Jr., Morita Y., Lertora J. J. T. Kinetics of N-acetylprocainamide deacetylation. Clin. Pharmacol. Then 1980; 28: 659–666
  • Vree T. B., Hekster Y. A., Tijhuis M. W., Oosterbaan M. J.M., Termond E. F.S. The acetylation-deacetylation equilibrium and mechanisms of renal excretion of sulfisomidine, sulfamethomidine, and sulfadimethoxine. Pharmaceut. Weekblad 1984; 6: 150–156
  • El-Mouelhi M., Kauffman F. C. Sublobular distribution of transferases and hydrolases associated with glucuronide, sulfate, and glutathione conjugation in human liver. Hepatology 1986; 6: 450–456
  • Anundi A. M., Kauffman F. C., El-Mouelhi M., Thurman R. G. Hydrolysis of organic sulfates in periportal and pericentral regions of the liver lobule: Studies with 4-methylumbelliferyl sulfate in the perfused rat liver. Mol. Pharmacol. 1986; 29: 599–605
  • Kauffman F. C., Whittaker M., Anundi I., Thurman R. G. Futile cycling of a sulfate conjugate by isolated hepatocytes. Mol. Pharmacol. 1991; 39: 414–420
  • Pang K. S., Gillette J. R. Sequential first-pass elimination of a metabolite derived from its precursor. J. Pharmacokinet. Bio-pharm. 1979; 7: 275–290
  • Mulder G. J., Brouwer S., Scholtens E. High-rate intestinal conjugation of 4-methylumbelliferone during intravenous infusion in the rat in vivo. Biochem. Pharmacol. 1984; 33: 2341–2344
  • Mulder G. J., Weitering J. G., Brouwer S., Scholtens E. Pharmacokinetics of glucuronidation in the rat in vivo and in intact perfused organs. Glucuronidation of 4-methylumbelliferone and harmol. The Falk Symposium 40, S. Matern, W. W. Bock, W. Gerok. MTP Press. 1984; 21–30
  • Miyauchi S., Sugiyama Y., Iga T., Hanano M. The conjuga-tive metabolism of 4-methylumbelliferone and deconjugation to the parent drug examined by isolated perfused liver and in vitro liver homogenates of rats. Chem. Pharm. Bull 1989; 37: 475–480
  • Osburne R., Joel S., Trew D., Slevin M. Analgesic activity of morphine-6-glucuronide. Lancet 1988; 1: 828
  • Paul D., Standifer K. M., Inturrisi C. E., Pasternik G. W. Pharmacological characterization of morphine-6B-glucuronide, a very potent metabolite. J. Pharmacol. Exp. Ther. 1989; 251: 477–483
  • Leblanc N., Wilde D. W., Keef K. D., Hume J. R. Electrophysiological mechanisms of minoxidil sulfate-induced vasodilution of rabbit portal vein. Circ Res 1989; 65: 1102–1111
  • Buhl A. E., Waldon D. J., Baker C. A., Johnson G. A. Minoxidil sulfate is the active metabolite that stimulates hair follicles. J. Invest. Dermatol. 1990; 95: 553–557
  • van Bladeren P. J. Formation of toxic metabolites from drugs and other xenobitoics by glutathione conjugation. Trends Pharmacol. Sci. 1988; 9: 295–299
  • Dekant W., Koob M., Henschler D. Metabolism of trichloro-ethene–in vivo and in vitro evidence for activation by glutathione conjugation. Chem.-Biol. Interact. 1990; 73: 89–101
  • deBaun J. R., Smith J. Y. R., Miller E. C., Miller J. A. Reactivity in vivo of the carcinogen N-hydroxy-2-acetylaminoflourene. Increase by sulfate ion. Science, Washington, DC 1971; 167: 184–186
  • Okuda H., Nojima H., Watanabe N., Miwa K., Watabe T. Activation fo the carcinogen, 5-hydroxymethylchrysene, to the mutagenic sulphate ester by mouse skin sulphotransferase. Biochem. Pharmacol 1988; 37: 970–973
  • Igwe O. J. Commentary. Biologically active intermediates generated by the reduced glutathione conjugation pathway. Toxicological implications. Biochem. Pharmacol. 1986; 35: 2987–2994
  • Waxman D. J. Glutathione S-transferases: Role in alkylating agent resistance and possible target for modulation chemotherapy–A review. Cancer Res. 1990; 50: 6449–6454
  • Bellamy W. T., Dalton W. S., Meltzer P., Dorr R. T. Role of glutathione and its associated enzymes in multidrug-resistant human myeloma cells. Biochem. Pharmacol. 1989; 38: 787–793
  • Castro V. M., Soderstrom M., Carlberg I., Widersten M., Plate A., Mannervik B. Carcinogenesis 1990; 11: 1569–1576
  • Ohno Y., Ormstad K., Ross D., Orrenius S. Mechanism of allyl alcohol toxicity and protective effects of low molecular-weight thiols studied with isolated rat hepatocytes. Toxicol. Appl. Pharmacol 1985; 78: 169–179
  • Dills R. L., Klaassenm C. D. The effect of inhibitors of mitochondrial energy production on hepatic glutathione, UDP-glucu-ronic acid, and adenosine 3′-phosphate-5′-phosphosulfate concentrations. Drug Metab. Dispos. 1986; 14: 190–196
  • Galinsky R. E., Levy G. Dose- and time-dependent elimination of acetaminophen in rats: Pharmacokinetic implications of cosub-strate depletion. J. Pharmacol. Exp. Ther. 1981; 210: 14–20
  • Jollow D. J., Thorgeirsson S. S., Potter W. Z., Hashimoto M., Mitchell J. R. Acetaminophen-induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen. Pharmacology 1974; 12: 251–271
  • Miner D. J., Kissinger P. T. Evidence for the involvement of N-acetyl-p-quinoneimine in acetaminophen metabolism. Biochem. Pharmacol 1979; 28: 3285–3290
  • Kosower N. S., Kosower E. M. The glutathione status of cells. Int. Rev. Cytology 1978; 54: 109–160
  • DeLeve L. D., Kaplowitz N. Importance and regulation of hepatic glutathione. Sem. Liver Dis. 1990; 10: 251–266
  • Mannervik B., Askelof P. Absence of a ping-pong pathway in the kinetic mechanism of glutathione S-transferase A from rat liver. Evidence based on quantitative comparison of the asymptotic properties of experimental data and alternative rate equation. FEBS Lett. 1975; 56: 218–221
  • Jacobson I., Askelof P., Warholm M., Mannervik B. A steady-state-kinetic random mechanism for glutathione 5-transferase A from rat liver. Eur. J. Biochem. 1977; 77: 253–262
  • Jacobson I., Warholm M., Mannervik B. The binding of substrates and a product of the enzymatic reaction to glutathione S-transferase A. J. Biol. Chem. 1979; 254: 7085–7089
  • Jacobson I., Warholm M., Mannervik B. Multiple inhibition of glutathione S-transferase A from rat liver by glutathione derivatives: Kinetic analysis supporting a steady-state random sequential mechanisms. Biochem. J. 1979; 177: 861–868
  • Danielson U. H., Mannervik B. Kinetic independence of the subunits of cytosolic glutathione transferase from the rat. Biochem. J. 1985; 231: 263–267
  • Chen W. -J., Graninski G. F., Armstrong R. N. Dissection of the catalytic mechanism of isoenzyme 4–4 of glutathione 5-tranS-ferase with alternative substrates. Biochemistry 1988; 27: 647–654
  • Chen R., Gillette J. R. Pharmacokinetic procedures for the estimation of organ clearances for the formation of short-lived metabolites. Acetaminophen induced glutathione depletion in hamster. Drug Metab. Dispos. 1988; 16: 373–385
  • D'Souza R. W., Francis W. R., Andersen M. E. Physiological model for tissue glutathione depletion and increased resynthesis after ethylene dichloride exposure. J. Pharmacol. Exp. Ther. 1988; 245: 563–568
  • Chiba M, Pang K. S. Effect of acinar distribution of glutathione on its depletion kinetics with acetaminophen: A simulation study. Drug Metab. Dispos., accepted for publication
  • Inoue M., Kinne R., Tran T., Arias I. M. Glutathione transport across hepatocyte plasma membranes: Analysis using isolated rat-liver sinusoidal-membrane vesicles. Eur. J. Biochem. 1984; 138: 491–495
  • Ookthens M., Hobdy K., Corvasce M. C., Aw T. Y., Kaplowitz N. Sinusoidal efflux of glutathione in the perfused rat liver: Evidence for a carrier-mediated process. J. Clin. Invest. 1985; 75: 258–265
  • Aw T. Y., Ookthens M., Kuhlenkamp J. F., Kaplowitz N. Transstimulation and driving forces for GSH transport in sinusoidal membrane vesicles in rat liver. Biochem. Biophys. Res. Commun. 1987; 143: 377–382
  • Garcia-Ruiz C., Fernande S-Checa J. C., Kaplowitz N. Bidirectional mechanism of plasma membrane transport of reduced glutathione in intact rat hepatocytes and membrane vesicles. J. Biol. Chem. 1992; 267: 22256–22264
  • Fernandez-Checa J. C., Maddatu T., Ookhtens M., Kaplowitz N. Inhibition of GSH efflux from rat liver by methionine: effect of GSH synthesis in cells and perfused organ. Am. J. Physiol. 1990; 258: G967–G973
  • Fernande S-Checa J. C., Kaplowitz N. The use of monochloro-bimane to determine hepatic GSH levels and synthesis. Anal. Biochem. 1990; 190: 212–219
  • Lu S. C., Garcia-Ruiz C., Kuhlenkamp J., Ookhtens M., Salas-Prato M., Kaplowitz N. Hormonal regulation of glutathione efflux. J. Biol. Chem. 1990; 265: 16088–16095
  • Aw T. Y., Ookthens M., Ren C., Kaplowitz N. Kinetics of glutathione efflux from isolated rat hepatocytes. Am. J. Physiol. 1986; 250: G236–G243
  • Agshar K., Reddy B. K., Krishna G. Histochemical localization of glutathione in tissues. J. Histochem. Cytochem. 1975; 23: 114–119
  • Smith M. T., Loveridge N., Wills E. D. The distribution of glutathione in the rat liver lobule. Biochem. J. 1979; 182: 103–108
  • Lauterburg B. H., Mitchell J. R. Regulation of hepatic glutathione turnover in rats in vivo and evidence for kinetic homogeneity of the hepatic glutathione pool. J. Clin. Invest. 1981; 67: 1415–1424
  • Adams J. D., Lauterburg B. H., Mitchell J. R. Plasma glutathione and glutathione disulfide in the rat: Regulation and response to oxidative stress. J. Pharmacol. Exp. Ther. 1983; 227: 749–754
  • Shimizu M., Morita S. Effects of feeding and fasting on hepato-lobular distribution of glutathione and cadmium-induced hepato-toxicity. Toxicology 1992; 75: 97–107
  • Kera Y., Penttila K. E., Lindros K. O. K. O. Glutathione replenishment capacity is lower in isolated perivenous than in peripheral hepatocytes. Biochem. J. 1988; 254: 411–417
  • Penttila K. E. Role of cysteine and taurine in regulating glutahione synthesis by periportal and perivenous hepatocytes. Biochem. J. 1990; 269: 659–664
  • Speisky H., Shackel N., Varghese G., Wade D., Israel Y. Role of hepatic gamma-glutamyltransferase in the degradation of circulating glutathione: Studies in the intact guinea pig perfused liver. Hepatology 1990; 11: 843–849
  • Lanca A. J., Israel Y. Histochemical demonstration of sinusoidal gamma-glutamyltransferase activity by substrate protection fixation: Comparative studies in rat and guinea pig liver. Hepatology 1991; 14: 857–863
  • Tanaka M. A. A histochemical study on the activity of gamma-glutamyl transpeptidase in liver disease. Acta Pathol. Jpn. 1974; 24: 651–665
  • Busachi C., Mebis J., Broeckaert L., Desmet V. Histochemistry of gamma-glutamyl transpeptidase in human liver biopsies. Pathol. Res. Pract. 1981; 172: 99–108
  • Szewczuk A., Milnerowics H., Polosatov M. V., Sobiech K. A. Immunofluorescent localization of gamma-glutamyl transferase in rat and bovine tissue. Acta Histochem. 1980; 66: 152–159
  • Ding D. L., Smith E. D., Peter T. J. Purification and properties of gamma-glutamyl transferase from normal rat liver. Biochim. Biophys. Acta 1981; 657: 334–343
  • Ballatori N., Jacob R., Boyer J. L. Intrabiliary glutathione hydrolysis: A source of glutamate in bile. J. Biol. Chem. 1986; 267: 7860–7865
  • Wootton A. M., Neale G., Moss D. W. Enzyme activities of cells of different types isolated from livers of normal and cholestatic rats. Clin. ScL 1977; 52: 585–590
  • Meyer P., Szutl E., Reuben A., Boyer J. Structural and functional polarity of canalicular and basolateral plasma membrane vesicles isolated in high yield from rat liver. J. Cell. Biol 1984; 98: 991–1000
  • Huseby N. A. Subcellular localization of gamma-glutamyl transferase activity in guinea pig liver: Effect of phenobarbital on the enzyme activity levels. Clin. Chim. Acta 1979; 94: 163–171
  • Pang K. S., Barker F., III, Schwab A. J., Simard A., Goresky C. A. Sulfation of acetaminophen by the perfused rat liver: The effect of red cell carriage. Hepatology, accepted for publication
  • Mizuma T., Hayashi M., Awazu S. Factors influencing drug sulfate and glucuronic acid conjugation rates in isolated rat hepatocytes: Significance of preincubation time. Biochem. Pharmacol. 1985; 34: 2573–2575
  • Watari N., Iwai M., Kaneniwa N. Pharmacokinetic study of the fate of acetaminophen and its conjugates in rats. J. Pharma-cokinet. Biopharm. 1983; 11: 245–272
  • Kaysen G. A., Pond S. M., Roper M. H., Austen K. F. Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen. Arch. Intern. Med. 1985; 145: 2019–2023
  • Lesser P. B., Vietti M. M., Clark W. D. Lethal enhancement of therapeutic doses of acetaminophen by alcohol. Dig. Dis. Sci. 1986; 31: 103–105
  • Black M., Raucy J. Acetaminophen, alcohol, and cytochrome P450. Ann. Intern. Med. 1986; 104: 427–492
  • Fayz S., Cherry W. F., Dawson J. R., Mulder G. J., Pang K. S. Inhibition of acetaminophen sulfation by 2,6-dichloro-4-nitro-phenol in the perfused rat liver preparation. Lack of a compensatory increase of glucuronidation. Drug Metab. Dispos. 1984; 12: 323–329

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.