Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 39, 2015 - Issue 3
313
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Genetic Modifiers of Sickle Cell Disease: A Genotype-Phenotype Relationship Study in a Cohort of 82 Children on Mayotte Island

, , , , &
Pages 156-161 | Received 20 Jul 2014, Accepted 15 Oct 2014, Published online: 25 Mar 2015

References

  • Adekile AD. Mild-phenotype sickle cell disease: Molecular basis, clinical presentation and management recommendations. Curr Paediatr. 2005;15(1):57–61
  • Pagnier J, Mears JG, Dunda-Belkhodja O, et al. Evidence for the multicentric origin of the sickle cell hemoglobin gene in Africa. Proc Natl Acad Sci USA. 1984;81(6):1771–1773
  • Lapoumeroulie C, Dunda O, Ducrocq R, et al. A novel sickle-cell mutation of yet another origin in Africa: The Cameroon type. Hum Genet. 1992;89(3):333–337
  • Gabriel A, Przybylski J. Sickle-cell anemia: A look at global haplotype distribution. Nat Educ. 2010;3(3):2. Available at (http://www.nature.com/scitable/topicpage/sickle-cell-anemia-a-look-at-global-875619.). [consulted online 2015 march 10]
  • Thein SL, Menzel S, Peng X, et al. Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci USA. 2007;104(27):11346–11351
  • Platt OS, Brambila DJ, Rosse WF, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330(33):1639–1644
  • Uda M, Galanello R, Sanna S, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proc Natl Acad Sci USA. 2008;105(5):1620–1625
  • Lettre G, Sankaran VG, Bezerra MA, et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and β-globin loci associate with fetal hemoglobin levels and pain crises in sickle-cell disease. Proc Natl Acad Sci USA. 2008;105(33):11869–11874
  • Badens C, Joly P, Agouti I, et al. Variants in genetic modifiers of β-thalassemia can help to predict the major or intermedia type of the disease. Haematologica. 2011;96(11):1712–1714
  • Thein SL. Genetic modifiers of β-thalassemia. Haematologica. 2005;90(5):649–660
  • Sedgewick A, Timofeev N, Sebastiani P, et al. BCL11A (2p16) is a major HbF quantitative trait locus in three different populations. Blood Cells Mol Dis. 2008;41(3):255–258
  • Badens C, Martinez di Montemuros F, Thuret I, et al. Molecular basis of haemoglobinopathies and G6PD deficiency in the Comorian population. Hematol J. 2000;1(4):264–268
  • Adams RJ, McKie VC, Hsu L, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med. 1998;339(1):5–11
  • Bernaudin F, Verlhac S, Arnaud C, et al. Impact of early transcranial Doppler screening and intensive therapy on cerebral vasculopathy outcome in a newborn sickle cell anemia cohort. Blood. 2011;117(4):1130–1140
  • Pissard S, Beuzard Y. A potential regulatory region for the expression of fetal hemoglobin in sickle cell disease. Blood. 1994;84(1):331–338
  • Puehringer H, Najmabadi H, Law HY, et al. Validation of a reverse-hybridization StripAssay for the simultaneous analysis of common α-thalassemia point mutations and deletions. Clin Chem Lab Med. 2007;45(5):605–610
  • HbVar Database. Available at (http://globin.bx.psu.edu/hbvar/menu.html). [consulted online 2015 march 10]
  • Federica F, Di Rocco ZC, Gad S, et al. Rapid detection of novel BRCA1 rearrangements in high-risk breast-ovarian cancer families using multiplex PCR of short fluorescent fragments. Hum Mutat. 2002;20(3):218–226
  • Sadarangani M, Makani J, Komba AN, et al. An observational study of children with sickle cell disease in Kili, Kenya. Br J Haematol. 2009;146(6):675–682
  • Serjeant GR. Sickle cell disease. Lancet. 1997;350(9079):725–730
  • Oner C, Dimovski AJ, Olivieri NF, et al. βS Haplotypes in various world populations. Hum Genet. 1992;89(1):99–104
  • Powars D, Hiti A. Sickle cell anemia. βS Gene cluster haplotypes as genetic markers for severe disease expression. Am J Dis Child. 1993;147(11):1197–1202
  • Belisário AR, Martins ML, Brito AMS, et al. β-Globin gene cluster haplotypes in a cohort of 221 children with sickle cell anemia or Sβ0-thalassemia and their association with clinical and hematological features. Acta Haematol. 2010;124(3):162–170
  • Ballas SK, Lieff S, Benjamin LJ, et al. Definitions of the phenotypic manifestations of sickle cell disease. Am J Hematol. 2011;85(1):6–13
  • Joly P, Pondarré C, Bardel C, et al. The α-globin genotype does not influence sickle cell disease severity in a retrospective cross-validation study of the pediatric severity score. Eur J Haematol. 2011;88(1):61–67
  • Steinberg MH. Predicting clinical severity in sickle cell anaemia. Br J Haematol. 2005;129(4):465–481
  • van den Tweel XW, van der Lee JH, Hejiboer H, et al. Development and validation of a pediatric severity index for sickle cell patients. Am J Hematol. 2010;85(10):746–751
  • Thein SL. Genetic modifiers of sickle cell disease. Hemoglobin. 2011;35(5–6):589–606
  • Sheehan VA, Luo Z, Flanagan JM, et al. Genetic modifiers of sickle cell anemia in the BABY HUG cohort: Influence on laboratory and clinical phenotypes. Am J Hematol. 2013;88(7):571–576

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.