524
Views
70
CrossRef citations to date
0
Altmetric
Original Article

Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery

, , &
Pages 1330-1339 | Received 24 Aug 2009, Accepted 23 Mar 2010, Published online: 14 Jun 2010

References

  • Kaur IP, Smitha R, Aggarwal D, Kapil M. (2002). Acetazolamide: Future perspective in topical glaucoma therapeutics. Int J Pharm, 248:1–14.
  • Blomdahl S, Calissendorff BM, Tengrowth B, Wallin O. (1997). Blindness in glaucoma patients. Acta Ophthalmol, 75:589–91.
  • Munier A, Gunning T, Kenny D, O’Keefe M. (1998). Causes of blindness in the adult population of the Republic of Ireland. Br J Ophthalmol, 82:630–3.
  • Hoyng PF, van Beek LM. (2000). Pharmacological therapy for glaucoma: A review. Drugs, 59:411–34.
  • Balfour JA, Wilde MI. (1997). Dorzolamide. A review of its pharmacology and therapeutic potential in the management of glaucoma and ocular hypertension. Drugs Aging, 10:384–403.
  • Rusk C, Sharpe E, Laurence J, Polis A, Adamsons I. (1998). Comparison of the efficacy and safety of 2% dorzolamide and 0.5% betaxolol in the treatment of elevated intraocular pressure. Dorzolamide Comparison Study Group. Clin Ther, 20:454–66.
  • Silver LH. (2000). Ocular comfort of brinzolamide 1.0% ophthalmic suspension compared with dorzolamide 2.0% ophthalmic solution: Results from two multicenter comfort studies. Brinzolamide Comfort Study Group. Surv Ophthalmol, 44(Suppl. 2):S141–5.
  • Afouna MI, Khedr A, Abdel-Naim AB, Al-Marzoqi A. (2010). Influence of various concentrations of terpene-4-ol enhancer and carbopol-934 mucoadhesive upon the in vitro ocular transport and the in vivo intraocular pressure lowering effects of dorzolamide ophthalmic formulations using albino rabbits. J Pharm Sci, 99:119–27.
  • Hughes PM, Mitra AK. (1993). Overview of ocular drug delivery and iatrogenic ocular cytopathologies. In: Mitra AK, ed. Ophthalmic drug delivery systems. New York: Marcel Dekker, 1–27.
  • Ma WD, Xu H, Wang C, Nie SF, Pan WS. (2008). Pluronic F127-g-poly(acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system. Int J Pharm, 350:247–56.
  • Edsman K, Carlfors J, Petersson R. (1998). Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. Eur J Pharm Sci, 6:105–12.
  • Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R. (1998). Ophthalmic drug delivery systems-recent advances. Prog Retin Eye Res, 17:33–58.
  • Kim EY, Gao ZG, Park JS, Li H, Han K. (2002). rhEGF/HP-beta-CD complex in poloxamer gel for ophthalmic delivery. Int J Pharm, 233:159–67.
  • García-Celma MJ. (1997). Solubilization of drugs in microemulsions. In: Solans C, Kunieda H, eds. Industrial applications of microemulsions. New York: Marcel Dekker, 123–45.
  • Silva-Cunha A, Fialho SL, Carneiro LB, Oréfice F. (2003). Microemulsões como veículos de drogas para administração ocular tópica. Arq Bras Oftalmol, 66:385–91.
  • Vandamme TF. (2002). Microemulsions as ocular drug delivery systems: Recent developments and future challenges. Prog Retin Eye Res, 21:15–34.
  • Azeem A, Ahmad FJ, Khar RK, Talegaonkar S. (2009). Nanocarrier for the transdermal delivery of an antiparkinsonian drug. AAPS PharmSciTech, 10:1093–103.
  • Jain R, Patravale VB. (2009). Development and evaluation of nitrendipine nanoemulsion for intranasal delivery. J Biomed Nanotechnol, 5:62–8.
  • Shakeel F, Ramadan W. (2010). Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids Surf B Biointerfaces, 75:356–62.
  • Ammar HO, Salama HA, Ghorab M, Mahmoud AA. (2009). Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech, 10:808–19.
  • Garti N, Aserin A, Tiunova I, Fanun M. (2000). A DSC study of water behavior in water-in-oil microemulsions stabilized by sucrose esters and butanol. Colloids Surf A Physicochem Eng Asp, 170:1–18.
  • Moreno MA, Ballesteros MP, Frutos P. (2003). Lecithin-based oil-in-water microemulsions for parenteral use: Pseudoternary phase diagrams, characterization and toxicity studies. J Pharm Sci, 92:1428–37.
  • Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. (2007). Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm, 66:227–43.
  • Pandit NK, Kisaka J. (1996). Loss of gelation ability of Pluronic® F127 in the presence of some salts. Int J Pharm, 145:129–36.
  • Bentley MV, Marchetti JM, Ricardo N, Ali-Abi Z, Collett JH. (1999). Influence of lecithin on some physical chemical properties of poloxamer gels: Rheological, microscopic and in vitro permeation studies. Int J Pharm, 193:49–55.
  • Zaki NM, Awad GA, Mortada ND, Abd Elhady SS. (2007). Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur J Pharm Sci, 32:296–307.
  • Miyazaki S, Suzuki S, Kawasaki N, Endo K, Takahashi A, Attwood D. (2001). In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int J Pharm, 229:29–36.
  • Wu C, Qi H, Chen W, Huang C, Su C, Li W, . (2007). Preparation and evaluation of a Carbopol/HPMC-based in situ gelling ophthalmic system for puerarin. Yakugaku Zasshi, 127:183–91.
  • Khan KA, Rhodes CT. (1972). Effect of compaction pressure on the dissolution efficiency of some direct compression systems. Pharm Acta Helv, 47:594–607.
  • Baydoun L, Furrer P, Gurny R, Muller-Goymann CC. (2004). New surface-active polymers for ophthalmic formulations: Evaluation of ocular tolerance. Eur J Pharm Biopharm, 58:169–75.
  • Draize JH, Woodard G, Calvey HO. (1944). Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther, 82:377–90.
  • Hou MJ, Shah DO. (1987). Effects of the molecular structure of the interface and continuous phase on solubilization of water in water/oil microemulsions. Langmuir, 3:1086–96.
  • Garti N, Aserin A, Ezrahi S, Wachtel E. (1995). Water solubilization and chain length compatibility in nonionic microemulsions. J Colloid Interface Sci, 169:428–36.
  • Modi A, Tayade P. (2007). A comparative solubility enhancement profile of valdecoxib with different solubilization approaches. Indian J Pharm Sci, 69:274–8.
  • Shiao SY, Chhabra V, Patist A, Free ML, Huibers PDT, Gregory A, . (1998). Chain length compatibility effects in mixed surfactant systems for technological applications. Adv Colloid Interface Sci, 74:1–29.
  • Mathis GA. (1999). Clinical ophthalmic pharmacology and therapeutics: Ocular drug delivery. In: Gelatt KN, ed. Veterinary ophthalmology. Florida: Lippincott Williams & Wilkins, 291–7.
  • Fialho SL, da Silva-Cunha A. (2004). New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin Experiment Ophthalmol, 32:626–32.
  • USP30-NF25. (2007). Pharmaceutical dosage forms: Ophthalmic preparations. The United State Pharmacopeia, The National Formulary, USP30-NF 25.
  • Ciba-Geigy. (1977). Wissenschaftliche Tabellen Geigy. 8th ed. Basel: Ciba-Geigy.
  • Keipert S, Siebenbrodt I, Lüders F, Bornschein M. (1989). Mikroemulsionen und ihre. Potenzielle pharmazeutische Nutzung. Pharmazie, 44:433–44.
  • Vadnere M, Amidon G, Lindenbaum S, Haslam JE. (1984). Thermodynamic studies on the gel-sol transition of some pluronic polyols. Int J Pharm, 22:207–18.
  • Nijenhuis KT. (1997). Thermoreversible networks: Viscoelastic properties and structure of gels. Adv Polym Sci, 130:160–93.
  • Zhou Z, Chu B. (1987). Anomalous association behavior of an ethylene oxide/propylene oxide ABA block copolymer in water. Macromolecules, 20:3089–91.
  • Zhou Z, Chu B. (1988). Anomalous micellization behavior and composition heterogeneity of a triblock ABA copolymer of (A) ethylene oxide and (B) propylene oxide in aqueous solution. Macromolecules, 21:2548–54.
  • Glatter O, Scherf O, Schillen K, Brown W. (1994). Characterization of a poly(ethylene oxide)-poly(propylene oxide) triblock copolymer (E027–P039–E027) in aqueous solution. Macromolecules, 27:6046–54.
  • Gupta H, Jain S, Mathur R, Mishra P, Mishra AK, Velpandian T. (2007). Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system. Drug Deliv, 14:507–715.
  • Koffi AA, Agnely F, Besnard M, Kablan Brou J, Grossiord JL, Ponchel G. (2008). In vitro and in vivo characteristics of a thermogelling and bioadhesive delivery system intended for rectal administration of quinine in children. Eur J Pharm Biopharm, 69(1):167–75.
  • Dumortier G, Grossiod JL, Zuber M, Couarraze G, Chaumeil JC. (1991). Rheological study of a thermoreversible morphine gel. Drug Dev Ind Pharm, 17:1255–65.
  • Juhasz J, Lenaerts V, Raymond P, Ong H. (1989). Diffusion of rat atrial natriuretic factor in thermoreversible poloxamer gels. Biomaterials, 10:265–8.
  • Wei G, Xu H, Ding PT, Li SM, Zheng JM. (2002). Thermosetting gels with modulated gelation temperature for ophthalmic use: The rheological and gamma scintigraphic studies. J Control Release, 83:65–74.
  • Liu T, Chu B. (2000). Formation of homogeneous gel-like phases by mixed triblock copolymer micelles in aqueous solution: FCC to BCC phase transition. J Appl Cryst, 33:727–30.
  • Bohorquez M, Koch C, Trygstad T, Pandit N. (1999). A study of the temperature-dependent micellization of Pluronic F127. J Colloid Interface Sci, 216:34–40.
  • Qi H, Chen W, Huang C, Li L, Chen C, Li W, . (2007). Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int J Pharm, 337:178–87.
  • Choi HK, Jung JH, Ryu JM, Yoon SJ, Oh YK, Kim CK. (1998). Development of in situ-gelling and mucoadhesive acetaminophen liquid suppository. Int J Pharm, 165:33–44.
  • Hughes WFJ. (1948). The tolerance of rabbit cornea for various chemical substances. Bull Johns Hopkins Hosp, 82:338–49.
  • Laillier J, Plazonnet B, Le Douarec JC. (1976). Evaluation of an objective method of studying eye irritation. Proc Eur Soc Toxicol, 17:336–50.
  • Conquet P, Durand G, Laillier J, Plazonnet B. (1977). Evaluation of ocular eye irritation in the rabbit: Objective versus subjective assessment. Toxicol Appl Pharmacol, 39:129–39.
  • Kwon JW, Han YK, Lee WJ, Cho CS, Paik SJ, Cho DI, . (2005). Biocompatibility of poloxamer hydrogel as an injectable intraocular lens: A pilot study. J Cataract Refract Surg, 31: 607–13.
  • Tamilvanan S, Benita S. (2004). The potential of lipid emulsion for ocular delivery of lipophilic drugs. Eur J Pharm Biopharm, 58:357–68.
  • Roggeband R, York M, Pericoi M, Braun W. (2000). Eye irritation responses in rabbit and man after single applications of equal volumes of undiluted model liquid detergent products. Food Chem Toxicol, 38:727–34.
  • Lawrence MJ, Rees GD. (2000). Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev, 45:89–121.
  • Kaur IP, Smitha R. (2002). Penetration enhancers and ocular bioadhesives: Two new avenues for ophthalmic drug delivery. Drug Dev Ind Pharm, 28:353–69.
  • Calvo P, Alonso MJ, Vila-Jato J, Robinson JR. (1996). Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J Pharm Pharmacol, 48:1147–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.