244
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Study of the properties of the new biodegradable polyurethane PU (TEG-HMDI) as matrix forming excipient for controlled drug delivery

, , , , &
Pages 1758-1764 | Received 07 Jun 2012, Accepted 01 Oct 2012, Published online: 02 Oct 2013

References

  • Ferris C, de Paz MV, Zamora F, Galbis JA. (2010). Dithiothreitol-based polyurethanes. Synthesis and degradation studies. Polym Degrad Stabil, 95:1480–487.
  • Wiggins MJ, Wilkoff B, Anderson JM, Hiltner A. (2001). Biodegradation of polyether polyurethane inner insulation in bipolar pacemaker leads. J Biomed Mater Res, 58:302–307.
  • Santerre JP, Woodhouse K, Laroche G, Labow RS. (2005). Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials, 26:7457–7470.
  • Christenson EM, Anderson JM, Hiltner A. (2007). Biodegradation mechanisms of polyurethane elastomers. Corros Sci, 42:312–323.
  • Takamoto T, Shirasaka H, Uyama H, Kobayashi S. (2011). Lipase-catalyzed hydrolytic degradation of polyurethane in organic solvent. Chem Lett 6:492–493.
  • De Paz MV, Marín R, Zamora F, Hakkou K, Alla A, Galbis JA, Muñoz-Guerra S. (2007). Linear polyurethanes derived from alditols and diisocyanates. J Polym Sci Part A: Polym Chem, 45:4109–4117.
  • De Paz MV, Aznar JA, Galbis JA. (2008). Versatile sugar derivatives for the synthesis of potential degradable hydrophilic-hydrophobic polyurethanes and polyureas. J Carboh Chem, 27:120–140.
  • Marín R, de Paz MV, Ittobane N, Galbis JA, Muñoz-Guerra S. (2009). Hydroxylated linear polyurethanes derived from sugar alditols. Macromolecular Chemistry & Physics, 210:486–494.
  • Gansen P, Dittgen M. (2012). Polyurethanes as self adhesive matrix for the transdermal drug delivery of testosterone. Drug Dev Ind Pharm, 38:597–602.
  • Chen X, Liu W, Zhao Y, Jiang L, Xu H, Yang X. (2009). Preparation and characterization of PEG-modified polyurethane pressure-sensitive adhesives for transdermal drug delivery. Drug Dev Ind Pharm, 35:704–711.
  • Costa E, Arancibia A, Aïache JM. (2004). Sistemas matriciales. Acta Farm. Bonaerense, 23:259–265.
  • Castellanos-Gil E, Caraballo I, Bataille B. Tablet design. In: Gad SC (ed.), Pharmaceutical manufacturing handbook: Production and processes. New Jersey: Wiley Interscience, 2008, 977–1052.
  • Omidian H, Park K. (2008). Swelling agents and devices in oral drug delivery. J Drug Delivery Sci Tech, 18:83–93.
  • Caraballo I. (2008). Critical points in the formulation of pharmaceutical swellable controlled release dosage forms-Influence of particle size. Particuology, 7:421–425.
  • Caraballo I, Fernández-Arévalo M, Millán M, Rabasco AM, Leuenberger H. (1996). Study of percolation thresholds in ternary tablets. Int J Pharm, 139:177–186.
  • Caraballo I, Fernández-Arévalo M, Holgado MA, Rabasco AM. (1993). Percolation theory: application to the study of the reléase behaviour from inert matrix systems. Int J Pharm, 96:175–181.
  • Caraballo I, Millán M, Rabasco AM, Leuenberger H. (1996). Zero-order released periods in inert matrices, Influence of the distance to the percolation threshold. Pharm Acta Helv, 71:335–339.
  • Millán M, Caraballo I, Rabasco AM. (1998). The role of the drug/excipient particle size ratio in the percolation model for tablets. Pharm Res, 15:216–220.
  • Melgoza LM, Rabasco AM, Sandoval H, Caraballo I. (2001). Estimation of the percolation thresholds in dextromethorphan hydrobromide matrices. Eur J Pharm Sci, 12:453–459.
  • Fuertes I, Miranda A, Millán M, Caraballo I. (2006). Estimation of the percolation thresholds in acyclovir hydrophilic matrix tablets. Eur J Pharm Biopharm, 64:336–342.
  • Miranda A, Millán M, Caraballo I. (2006). Study of the critical points of HPMC hydrophilic matrices for controlled drug delivery. Int J Pharm, 311:75–81.
  • Fuertes I, Caraballo I, Miranda A, Millán M. (2010). Study of critical points of drugs with different solubilities in hydrophilic matrices. Int J Pharm, 383:138–146.
  • Aguilar-de-Leyva A, Sharkawi T, Bataille B, Baylac G, Caraballo I. (2011). Release behaviour of clozapine matrix pellets based on percolation theory. Int J Pharm, 404:133–141.
  • Aguilar-de-Leyva A, Cifuentes C, Rajabi-Siahboomi AR, Caraballo I. (2012). Study of the critical points and the role of the pores and viscosity in carbamazepine hydrophilic matrix tablets. Eur J Pharm Biopharm, 80:136–142.
  • Boza A, Caraballo I, Alvarez-Fuentes J, Rabasco AM. (1999). Evaluation of Eudragit RS-PO and Ethocel 100 matrices for the controlled release of lobenzarit disodium. Drug Dev Ind Pharm, 25:229–233.
  • Blattner D, Kolb M, Leuenberger H. (1990). Percolation theory and compactibility of binary powder systems. Pharm Res, 7:113–117.
  • Bonny JD, Leuenberger H. (1991). Matrix type controlled release systems: I. Effect of percolation on drug dissolution kinetics. Pharm Acta Helv, 66:160–164.
  • Bonny JD, Leuenberger H. (1993). Matrix type controlled release systems II: Percolation effects in non-swellable matrices. Pharm Acta Helv, 68:25–33.
  • Holman LE, Leuenberger H. (1988). The relationship between solid fraction and mechanical properties of compacts- the percolation theory model approach. Int J Pharm, 46:35–44.
  • Leuenberger H, Leu R. (1992). Formation of a tablet: a site and bond percolation phenomenon. J Pharm Sci, 81:976–982.
  • Leuenberger H, Rohera BD, Haas C. (1987). Percolation theory- a novel approach to solid dosage form design. Int J Pharm, 38:109–115.
  • Stauffer D, Aharony A. Introduction to percolation theory. Taylor & Francis, London, 1992.
  • Gonçalves-Araújo T, Rajabi-Siahboomi AR, Caraballo I. (2008). Application of percolation theory in the study of an extended release Verapamil hydrochloride formulation. Int J Pharm, 361:112–117.
  • Caraballo I. (2010). Factors affecting drug release from hydroxypropyl methylcellulose matrix systems in the light of classical and percolation theories. Expert Opin Drug Deliv, 7:1291–1301.
  • European Pharmacopoeia, 7th edn, 2011.
  • Pérez P, Suñé-Negre JM, Miñarro M, Roig M, Fuster R, García-Montoya E et al. (2006). A new expert systems (SeDeM diagram) for control batch powder formulation and preformulation drug products. Eur J Pharm Biopharm, 64:351–359.
  • Higuchi T. (1963). Mechanism of sustained-action medication. theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci, 52:1145–1149.
  • Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. (1983). Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm, 15:25–35.
  • Peppas NA, Sahlin JJ. (1983). A simple equation for the description of solute release III: Coupling of diffusion and relaxation. Int J Pharm, 57:169–172.
  • Ritger PL, Peppas NA. (1987). A simple equation for description of solute release I: Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release, 5:23–36.
  • Staniforth J. Powder flow. In: Aulton M (ed.). Pharmaceutics: The science of dosage form design. London: Churchill Livingstone, 2002:197–210.
  • Castellanos Gil E, Iraizoz Colarte A, Bataille B, Brouillet F, Caraballo I. (2009). Estimation of the percolation thresholds in ternary lobenzarit disodium-dextran-HPMC hydrophilic matrices tablets: effects of initial porosity. Eur J Pharm Sci, 38:312–319.
  • Contreras L, Melgoza LM, Villalobos R, Caraballo I. (2010). Study of the critical points of experimental HPMC-NaCMC hydrophilic matrices. Int J Pharm, 386:52–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.