573
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Deformable liposomes by reverse-phase evaporation method for an enhanced skin delivery of (+)-catechin

, , , , , & show all
Pages 260-265 | Received 17 Sep 2012, Accepted 04 Dec 2012, Published online: 29 Jan 2013

References

  • Geetha T, Garg A, Chopra K, Pal Kaur I. Delineation of antimutagenic activity of catechin, epicatechin and green tea extract. Mutat Res 2004;55:665–74
  • Huang YW, Liu Y, Slavik D, et al. Anti-obesity effects of epigallocatechin-3-gallate, orange peel extract, black tea extract, caffeine and their combinations in a mouse model. J Funct Foods 2009;1:304–10
  • Fujiki H. Green tea: health benefits as cancer preventive for humans. Chem Rec 2005;5:119–32
  • Yukihiko H. Green tea: health benefits and applications. New York: Marcel Dekker Inc.; 2001:53–6
  • Nava D ed. Skin aging handbook: an integrated approach to biochemistry and product development. New York: William Andrew Inc.; 2008:213–15
  • Luo D, Min W, Lin XF, et al. Effect of epigallocatechingallate on ultraviolet B-induced photo-damage in keratinocyte cell line. Am J Chin Med 2006;34:911–22
  • Mukhtar H, Katiyar SK, Agarwal R. Green tea-anticarcinogenic effects. J Invest Dermatol 1994;102:3–7
  • Levin C, Maibach HI. Exploration of alternative and natural drugs in dermatology. Arch Dermatol 2002;138:207–11
  • Vayalil PK, Elmets CA, Katiyar SK. Treatments of green tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin. Carcinogenesis 2003;24:927–36
  • Zykova TA, Zhang Y, Zhu F, et al. The signal transduction networks required for phosphorylation of STAT1 at Ser727 in mouse epidermal JB6 cells in the UVB response and inhibitory mechanisms of tea polyphenols. Carcinogenesis 2005;26:331–42
  • Martin A, Bustamante P, Chun AHC. Physical pharmacy. Philadelphia: Lippincott Williams & Wilkins; 1993:652–3
  • Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol 2009;4:197–206
  • Poaty B, Poaty B, Dumarcay S, Perrin D. New lipophilic catechin derivatives by oxa-Pictet-Spengler Reaction. Eur Food Res Technol 2009;230:111–17
  • Batchelder RJ, Calder CP, Tomas, CM. In vitro transdermal delivery of the major catechins and caffeine from extract of Camellia sinensis. Int J Pharm 2004;283:45–51
  • Su YL, Leung LK, Huang Y, Chen ZY. Stability of tea theaflavins and catechins. Food Chem 2003;83:189–95
  • Kompella UB, Lee HL. Delivery systems for penetration enhancement of peptide and protein drugs: design considerations. Adv Drug Deliv Rev 2001;46:211–45
  • Schmidts T, Dobler D, Von den Hoff S, et al. Protective effect of drug delivery systems against the enzymatic degradation of dermally applied DNAzyme. Int J Pharm 2011;410:75–82
  • Mezei M, Gulasekharam V. Liposomes – a selective drug delivery system for the topical route of administration I. Lotion dosage form. Life Sci 1980;26:1473–77
  • Troy DB ed. Remington: the science and practice of pharmacy. Baltimore, MD: Lippincott Williams & Wilkins; 2005:1018–25
  • Betz G, Aeppli A, Menshutina N, Leuenberger H. In vivo comparison of various liposome formulations for cosmetic application. Int J Pharm 2005;296:44–54
  • Moussaoui N, Cansell M, Denizot A. Marinosomes®, marine lipid-based liposomes: physical characterization and potential application in cosmetics. Int J Pharm 2002;242:361–5
  • Takahashi M, Kitamoto D, Asikin Y, et al. Liposomes encapsulating aloe vera leaf gel extract significantly enhance proliferation and collagen synthesis in human skin cell lines. J Oleo Sci 2009;58:643–50
  • Rosen M. Delivery system handbook for personal care and cosmetic products technology, applications, and formulations. New York: William Andrew Pub.; 2005:297
  • Kirjavainen M, Urtti A, Jääskeläinen I, et al. Interaction of liposomes with human skin in vitro – the influence of lipid composition and structure. Acta Biochim Biophys Sin 1996;1304:179–89
  • Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Acta Biochim Biophys Sin 1992;1104:226–32
  • Cevc G, Blume G, Schätzlein A, et al. The skin: a pathway for systemic treatment with patches and lipid-based agent carriers. Adv Drug Deliv Rev 1996;18:349–78
  • Srisuk P, Thongnopnua P, Raktanochai U, Kanokpanon S. Physico-chemical characteristics of ethotrexate-entrapped oleic acid-containing deformable liposomes for in vitro transepidermal delivery targeting psoriasis treatment. Int J Pharm 2012;427:426–34
  • Gillet A, Grammenos A, Compère P, et al. Development of a new topical system: drug-in-cyclodextrin-in-deformable liposome. Int J Pharm 2009;380:174–80
  • Maestrelli F, González-Rodríguez ML, Rabasco AM, et al. New “drug-in cyclodextrin-in deformable liposomes” formulations to improve the therapeutic efficacy of local anaesthetics. Int J Pharm 2010;395:222–31
  • Hiruta Y, Hattori Y, Kawano K, et al. Novel ultra-deformable vesicles entrapped with bleomycin and enhanced to penetrate rat skin. J Control Release 2006;113:146–54
  • Wagner A, Vorauer-Uhl K. Liposome technology for industrial purposes. J Drug Deliv 2011;2011:ID 591325
  • Szoka F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci India Sect B Biol Sci 1978;75:4194–8
  • Li DH, Martini N, Wu ZM, Wen JY. Development of an isocratic HPLC method for catechin quantification and its application to formulation studies. Fitoterapia 2012;83:1267–74
  • Szoka F, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 1980;9:467–508
  • Shah VP, Flynn GL, Yacobi A, et al. Bioequivalence of topical dermatological dosage forms–methods of evaluation of bioequivalence. Skin Pharmacol Appl Skin Physiol 1998;11:117–24
  • Wagner S, Suter A, Merfort I. Skin penetration studies of arnica preparations and of their sesquiterpene lactones. Planta Med 2004;70:897–903
  • Verma DD, Verma S, Blume G, Fahr A. Particle Size of liposomes influences dermal delivery of substances into skin. Int J Pharm 2003;258:141–51
  • Roberta LR, Habbersett RC, Scher I, et al. Influence of vesicle size on complement-dependent immune damage to liposomes. Acta Biochim Biophys Sin 1986;855:223–30
  • Gillet A, Grammenos A, Compère P, et al. Development of a new topical system: drug-in-cyclodextrin-in-deformable liposomes. Int J Pharm 2009;380:174–80
  • Trotta M, Peira E, Carlotti ME, Gallarate M. Deformable liposomes for dermal administration of methotrexate. Int J Pham 2004;270:119–25
  • Honeywell-Nguyen PL, Bouwstra JA. The in vitro transport of pergolide from surfactant-based elastic vesicles through human skin: a suggested mechanism of action. J Control Release 2003;86:145–56
  • El Maghraby GM, Barry BW, William AC. Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci 2008;34:203–22
  • Van Winden ECA. Freeze-drying of liposomes: theory and practice. Methods Enzymol 2003;15:99–110
  • Fang JY, Hwang TL, Huang YL, Fang CL. Enhancement of the transdermal delivery of catechins by liposomes incorporating anionic surfactants and ethanol. Int J Pharm 2006;310:131–8
  • Gould–Fogerite S, Mannino RJ. Liposome technology liposome preparation and related techniques. New York: Taylor & Francis 2006;68–79
  • Wu WB, Chiang HS, Fang JY, et al. (+)-Catechin prevents ultraviolet B-induced human keratinocyte death via inhibition of JNK phosphorylation. Life Sci 2006;79:801–7
  • Lonati-Gwigani M, Galligani L, Fulle GC. Effect of (+)-catechin on purified prolylhydroxylase and on collagen synthesis in skin fibroblasts in culture. Biochem Pharmacol 1979;28:2573–8
  • Verma DD, Verma S, Blume G, Fahr A. Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm 2003;258:141–51
  • Srisuk P, Thongnopnua P, Raktanonchai U, Kanokpanont S. Physico-chemical characteristics of methotrexate-entrapped oleic acid-containing deformable liposomes for in vitro transepidermal delivery targeting psoriasis treatment. Int J Pharm 2010;427:426–34
  • Boinpally RR, Zhou SL, Poondru S, et al. Lecithin vesicles for topical delivery of diclofenac. Eur J Pharm Biopharm 2003;56:389–92
  • Honeywell-Nguyen PL, Arenja S, Bouwstra JA. Skin penetration and mechanisms of action in the delivery of the D2-agonist rotigotine from surfactant-based elastic vesicle formulations. Pharm Res 2003;20:1619–25
  • Honeywell-Nguyen PL, Bouwstra JA. The in vitro transport of pergolide from surfactant-based elastic vesicles through human skin: a suggested mechanism of action. J Control Release 2003;86:145–56
  • Elsayed M, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm 2006;322:60–6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.