1,339
Views
46
CrossRef citations to date
0
Altmetric
Review Article

Recent advancements in mechanical reduction methods: particulate systems

& , III
Pages 289-300 | Received 14 Feb 2013, Accepted 17 Jul 2013, Published online: 30 Aug 2013

References

  • Hughey JR, Williams RO. Mechanical particle-size reduction techniques. In: Williams III RO, Watts AB, Miller DA, eds. Formulating poorly water soluble drugs [Internet]. New York (NY): Springer New York; 2012:131–70. Available from: http://www.springer.com/biomed/pharmaceutical+science/book/978-1-4614-1143-7 [last accessed 13 May 2013]
  • Heimbach T, Fleisher D, Kaddoumi A. Overcoming poor aqueous solubility of drugs for oral delivery. In: Stella VJ, Borchardt RT, Hageman MJ, et al., eds. Prodrugs [Internet]. New York (NY): Springer New York;2013:157–215. Available from: http://www.springerlink.com/index/10.1007/978-0-387-49785-3_5 [last accessed 13 May 2013]
  • Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol 2008;36:43–8
  • Kawabata Y, Wada K, Nakatani M, et al. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm 2011;420:1–10
  • Kumar N, Shishu, Bansal G, et al. Preparation and cyclodextrin assisted dissolution rate enhancement of itraconazolium dinitrate salt. Drug Dev Ind Pharm 2013;39:342–51
  • Özdemir N, Erkin J. Enhancement of dissolution rate and bioavailability of sulfamethoxazole by complexation with β-cyclodextrin. Drug Dev Ind Pharm 2012;38:331–40
  • Sun M, Si L, Zhai X, et al. The influence of co-solvents on the stability and bioavailability of rapamycin formulated in self-microemulsifying drug delivery systems. Drug Dev Ind Pharm 2011;37:986–94
  • Chen W, Fan D, Meng L, et al. Enhancing effects of chitosan and chitosan hydrochloride on intestinal absorption of berberine in rats. Drug Dev Ind Pharm 2012;38:104–10
  • Merisko-Liversidge E, Sarpotdar P, Bruno J, et al. Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm Res 1996;13:272–8
  • Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc 1897;19:930–4
  • Skinner L, Sambles J. The Kelvin equation – a review. J Aerosol Sci 1972;3:199–210
  • Sigfridsson K, Nordmark A, Theilig S, Lindahl A. A formulation comparison between micro- and nanosuspensions: the importance of particle size for absorption of a model compound, following repeated oral administration to rats during early development. Drug Dev Ind Pharm 2011;37:185–92
  • Junghanns J-UAH, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomed 2008;3:295–310
  • Jinno J, Kamada N, Miyake M, et al. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release 2006;111:56–64
  • Singh BN. Effects of food on clinical pharmacokinetics. Clin Pharmacokinet 1999;37:213–55
  • Won CS, Oberlies NH, Paine MF. Mechanisms underlying food–drug interactions: inhibition of intestinal metabolism and transport. Pharmacol Therapeut 2012;136:186–201
  • Katteboinaa S, Chandrasekhar V, Akira S. Drug nanocrystals: a novel formulation approach for poorly soluble drugs. Int J PharmTech Res 2009;1:682–94
  • Kraft WK. The pharmacokinetics of nebulized nanocrystal budesonide suspension in healthy volunteers. J Clin Pharmacol 2004;44:67–72
  • Ganta S, Paxton JW, Baguley BC, Garg S. Formulation and pharmacokinetic evaluation of an asulacrine nanocrystalline suspension for intravenous delivery. Int J Pharm 2009;367:179–86
  • Gao Y, Li Z, Sun M, et al. Preparation and characterization of intravenously injectable curcumin nanosuspension. Drug Deliv 2011;18:131–42
  • Yasuji T, Takeuchi H, Kawashima Y. Particle design of poorly water-soluble drug substances using supercritical fluid technologies. Adv Drug Deliv Rev 2008;60:388–98
  • Sheth P, Sandhu H, Singhal D, et al. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production. Curr Drug Deliv 2012;9:269–84
  • Verma S, Gokhale R, Burgess DJ. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharmaceut 2009;380:216–22
  • Gassmann P, List M, Schweitzer A, Sucker H. Hydrosols: alternatives for the parenteral application of poorly water soluble drugs. Eur J Pharmaceut Biopharmaceut 1994;40:64–72
  • Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharmaceut 2010;399:129–39
  • Bansal S, Bansal M, Kumria R. Nanocrystals: current strategies and trends. Int J Res Pharmaceut Biomed Sci 2012;3:406–19
  • Yaeger S. Innovative milling and micronization techniques for the pharmaceutical industry [Internet]. Hosokawa Micron Powder Systems; Available from: http://hmicronpowder.com/INNOVATIVE_MILLING.PDF [last accessed 13 May 2013]
  • Tanaka Y, Inkyo M, Yumoto R, et al. Nanoparticulation of poorly water soluble drugs using a wet-mill process and physicochemical properties of the nanopowders. Chem Pharm Bull 2009;57:1050–7
  • Tanaka Y, Inkyo M, Yumoto R, et al. Nanoparticulation of probucol, a poorly water-soluble drug, using a novel wet-milling process to improve in vitro dissolution and in vivo oral absorption. Drug Dev Ind Pharm 2012;38:1015–23
  • Monteiro A, Afolabi A, Bilgili E. Continuous production of drug nanoparticle suspensions via wet stirred media milling: a fresh look at the Rehbinder effect. Drug Dev Ind Pharm 2013;39:266–83
  • Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol 2010;62:1569–79
  • Hu J, Johnston KP, Williams RO. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind Pharm 2004;30:233–45
  • Bhakay A, Merwade M, Bilgili E, Dave RN. Novel aspects of wet milling for the production of microsuspensions and nanosuspensions of poorly water-soluble drugs. Drug Dev Ind Pharm 2011;37:963–76
  • Kesisoglou F, Panmai S, Wu Y. Nanosizing — Oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev 2007;59:631–44
  • Hao L, Wang X, Zhang D, et al. Studies on the preparation, characterization and pharmacokinetics of Amoitone B nanocrystals. Int J Pharmaceut 2012;433:157–64
  • Keck C, Muller R. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharmaceut Biopharmaceut 2006;62:3–16
  • Müller R., Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev 2001;47:3–19
  • Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharmaceut [Internet]. 2012 Sep. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378517312009088 [last accessed 13 May 2013]
  • Liversidge GG, Conzentino P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int J Pharmaceut 1995;125:309–13
  • Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharmaceut 1995;125:91–7
  • Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev 2011;63:427–40
  • Wyeth Pharmaceuticals, Pfizer. Rapamune, oral solution and tablets: highlights from prescribing information; 2010. Available from: http://labeling.pfizer.com/showlabeling.aspx?id=139 [last accessed 13 May 2013]
  • Muller RH, Moschwitzer J, Bushrab FN. Manufacturing of nanoparticles by milling and homogenization techniques. In: Gupta RB, Kompella UB, eds. Nanoparticle technology for drug delivery. New York: Taylor & Francis; 2006:24--5
  • Merck & Co, Inc. Emend, oral capsules: highlights from prescribing information; 2012. Available from: http://www.merck.com/product/usa/pi_circulars/e/emend/emend_pi.pdf?WT.mc_id=N02N3 [last accessed 13 May 2013]
  • PAR Pharmaceutical Co., Inc. Megace ES, oral suspension: highlights from prescribing information; 2010. Available from: http://www.megacees.com/PDF/Megace_ES_Portrait_PI.pdf [last accessed 13 May 2013]
  • Abbott Laboratories. Tricor, tablet: highlights from prescribing information; 2011. Available from: http://www.rxabbvie.com/pdf/tricorpi.pdf [last accessed 13 May 2013]
  • Janssen Pharmaceuticals, Inc. Invega sustenna, intramuscular injection: highlights from prescribing information; 2012. Available from: http://www.invegasustenna.com/pdf/invegasustenna-prescribing-info.pdf [last accessed 13 May 2013]
  • Mishra AK, Vachon M, Guivarc’h P. IDD Technology: Oral delivery of water insoluble drugs using phospholipis-stabilized microparticulate IDD formulations. In: Rathbone M, Hadgraft J, Roberts M, eds. Modified-release drug delivery technology. 1st ed. New York (NY): Marcel Dekker; 2002:151–75
  • SkyePharma PLC. Triglide, oral tablets: highlights from prescribing information; 2010. Available from: http://www.rxlist.com/triglide-drug.htm [last accessed 13 May 2013]
  • Guivarc’h P-H, Vachon MG, Fordyce D. A new fenofibrate formulation: results of six single-dose, clinical studies of bioavailability under fed and fasting conditions. Clin Ther 2004;26:1456–69
  • Baert L, van ‘t Klooster G, Dries W, et al. Development of a long-acting injectable formulation with nanoparticles of rilpivirine (TMC278) for HIV treatment. Eur J Pharmaceut Biopharmaceut 2009;72:502–8
  • Tevaarwerk AJ, Holen KD, Alberti DB, et al. Phase I trial of 2-methoxyestradiol nanocrystal dispersion in advanced solid malignancies. Clin Cancer Res 2009;15:1460–5
  • Quinn K, Gullapalli RP, Merisko-liversidge E, et al. A formulation strategy for gamma secretase inhibitor ELND006, a BCS class II compound: development of a nanosuspension formulation with improved oral bioavailability and reduced food effects in dogs. J Pharmaceut Sci 2012;101:1462–74
  • Wang P, Luo Q, Miao Y, et al. Improved dissolution rate and bioavailability of fenofibrate pellets prepared by wet-milled-drug layering. Drug Dev Ind Pharm 2012;38:1344–53
  • Möschwitzer J, Achleitner G, Pomper H, Müller RH. Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. Eur J Pharmaceut Biopharmaceut 2004;58:615–19
  • Langguth P, Hanafy A, Frenzel D, et al. Nanosuspension formulations for low-soluble drugs: pharmacokinetic evaluation using spironolactone as model compound. Drug Dev Ind Pharm 2005;31:319–29
  • Hanafy A, Spahnlangguth H, Vergnault G, et al. Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv Drug Deliv Rev 2007;59:419–26
  • Sun W, Mao S, Shi Y, et al. Nanonization of itraconazole by high pressure homogenization: Stabilizer optimization and effect of particle size on oral absorption. J Pharmaceut Sci 2011;100:3365–73
  • Wang Y, Liu Z, Zhang D, et al. Development and in vitro evaluation of deacety mycoepoxydiene nanosuspension. Colloids Surf B Biointerf 2011;83:189–97
  • Bushrab FN, Muller R. Nanocrystals of poorly soluble drugs for oral administration. J New Drugs 2003;5:20–2
  • Shelar DB, Pawar SK, Vavia PR. Fabrication of isradipine nanosuspension by anti-solvent microprecipitation–high-pressure homogenization method for enhancing dissolution rate and oral bioavailability. Drug Deliv Translat Res [Internet]. 2012 Jun 19. Available from: http://www.springerlink.com/index/10.1007/s13346-012-0081-3 [last accessed 13 May 2013]
  • Pu X, Sun J, Wang Y, et al. Development of a chemically stable 10-hydroxycamptothecin nanosuspensions. Int J Pharmaceut 2009;379:167–73
  • Moschwitzer J, Muller RH. Nanocrystal formulations for improved delivery of poorly soluble drugs. In: Hunter RJ, Preedy VR, eds. Nanomedicine in health and disease. 1st ed. New York (NY): CRC Press; 2011:79--99
  • Kakran M, Shegokar R, Sahoo NG, et al. Fabrication of quercetin nanocrystals: Comparison of different methods. Eur J Pharmaceut Biopharmaceut 2012;80:113–21
  • Kakran M, Shegokar R, Sahoo NG, et al. Long-term stability of quercetin nanocrystals prepared by different methods. J Pharm Pharmacol 2012;64:1394–402
  • Jiang T, Han N, Zhao B, et al. Enhanced dissolution rate and oral bioavailability of simvastatin nanocrystal prepared by sonoprecipitation. Drug Dev Ind Pharm 2012;38:1230–9
  • Lee J. Drug nano- and microparticles processed into solid dosage forms: physical properties. J Pharmaceut Sci 2003;92:2057–68
  • Chaubal MV, Popescu C. Conversion of nanosuspensions into dry powders by spray drying: a case study. Pharmaceut Res 2008;25:2302–8
  • De Waard H, Hinrichs WLJ, Frijlink HW. A novel bottom-up process to produce drug nanocrystals: controlled crystallization during freeze-drying. J Control Release 2008;128:179–83
  • De Waard H, Grasmeijer N, Hinrichs WLJ, et al. Preparation of drug nanocrystals by controlled crystallization: application of a 3-way nozzle to prevent premature crystallization for large scale production. Eur J Pharmaceut Sci 2009;38:224–9
  • Salazar J, Heinzerling O, Müller RH, Möschwitzer JP. Process optimization of a novel production method for nanosuspensions using design of experiments (DoE). Int J Pharmaceut 2011;420:395–403
  • Salazar J, Ghanem A, Müller RH, Möschwitzer JP. Nanocrystals: comparison of the size reduction effectiveness of a novel combinative method with conventional top-down approaches. Eur J Pharmaceut Biopharmaceut 2012;81:82–90
  • Staedtke V, Brahler M, Muller A, et al. In vitro inhibition of fungal activity by macrophage-mediated sequestration and release of encapsulated amphotericin B nanosupension in red blood cells. Small 2010;6:96–103
  • Agarwal A, Lvov Y, Sawant R, Torchilin V. Stable nanocolloids of poorly soluble drugs with high drug content prepared using the combination of sonication and layer-by-layer technology. J Control Release 2008;128:255–60
  • Zheng Z, Zhang X, Carbo D, et al. Sonication-assisted synthesis of polyelectrolyte-coated curcumin nanoparticles. Langmuir 2010;26:7679–81
  • Pattekari P, Zheng Z, Zhang X, et al. Top-down and bottom-up approaches in production of aqueous nanocolloids of low solubility drug paclitaxel. Phys Chem Chem Phys 2011;13:9014--19
  • Niwa T, Nakanishi Y, Danjo K. One-step preparation of pharmaceutical nanocrystals using ultra cryo-milling technique in liquid nitrogen. Eur J Pharmaceut Sci 2010;41:78–85
  • Sugimoto S, Niwa T, Nakanishi Y, Danjo K. Novel ultra-cryo milling and co-grinding technique in liquid nitrogen to produce dissolution-enhanced nanoparticles for poorly water-soluble drugs. Chem Pharm Bull 2012;60:325–33
  • Sugimoto S, Niwa T, Nakanishi Y, Danjo K. Development of a novel ultra cryo-milling technique for a poorly water-soluble drug using dry ice beads and liquid nitrogen. Int J Pharmaceut 2012;426:162–9
  • Kenth S. Investigation of femtosecond laser technology for the fabrication of drug nanocrystals in suspension [Masters of Science]. Canada: University of Montreal; 2009
  • Asahi T, Sugiyama T, Masuhara H. Laser fabrication and spectroscopy of organic nanoparticles. Accounts Chem Res 2008;41:1790–8
  • Kenth S, Sylvestre J-P, Fuhrmann K, et al. Fabrication of paclitaxel nanocrystals by femtosecond laser ablation and fragmentation. J Pharmaceut Sci 2011;100:1022–30
  • Sylvestre J-P, Tang M-C, Furtos A, et al. Nanonization of megestrol acetate by laser fragmentation in aqueous milieu. J Control Release 2011;149:273–80
  • Takebe G, Takagi T, Suzuki M, Hiramatsu M. Preparation of polymeric nanoparticles of cyclosporin A using infrared pulsed laser. Int J Pharmaceut 2011;414:244–50
  • Sun W, Tian W, Zhang Y, et al. Effect of novel stabilizers—cationic polymers on the particle size and physical stability of poorly soluble drug nanocrystals. Nanomed Nanotechnol Biol Med 2012;8:460–7
  • Kim S, Lee J. Folate-targeted drug-delivery systems prepared by nano-comminution. Drug Dev Ind Pharm 2011;37:131–8
  • Lee J, Choi J-Y, Park CH. Characteristics of polymers enabling nano-comminution of water-insoluble drugs. Int J Pharm 2008;355:328–36
  • Dong Y, Feng S-S. Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles prepared by high pressure homogenization for paclitaxel chemotherapy. Int J Pharmaceut 2007;342:208–14
  • Teixeira M, Alonso MJ, Pinto MMM, Barbosa CM. Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. Eur J Pharmaceut Biopharmaceut 2005;59:491–500
  • Ishihara T, Goto M, Kanazawa H, et al. Efficient entrapment of poorly water-soluble pharmaceuticals in hybrid nanoparticles. J Pharmaceut Sci 2009;98:2357–63
  • Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 2012;64:686–700
  • Dodiya SS, Chavhan SS, Sawant KK, Korde AG. Solid lipid nanoparticles and nanosuspension formulation of Saquinavir: preparation, characterization, pharmacokinetics and biodistribution studies. J Microencapsul 2011;28:515–27
  • Pandita D, Ahuja A, Lather V, et al. Development of lipid-based nanoparticles for enhancing the oral bioavailability of paclitaxel. AAPS PharmSciTech 2011;12:712–22
  • Peltier S, Oger J-M, Lagarce F, et al. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm Res 2006;23:1243–50
  • FDA Center for Drug Evaluation and Research: NDA 21-110 Pharmacology Review [Internet]. 2000. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2000/21110_Rapamune_pharmr.pdf [last accessed 13 May 2013]
  • Wu Y, Loper A, Landis E, et al. The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a Beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int J Pharmaceut 2004;285:135–46

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.