567
Views
28
CrossRef citations to date
0
Altmetric
Research Article

Thermoresponsive ophthalmic poloxamer/tween/carbopol in situ gels of a poorly water-soluble drug fluconazole: preparation and in vitroin vivo evaluation

, , , &
Pages 1402-1410 | Received 14 Apr 2013, Accepted 30 Jun 2013, Published online: 14 Aug 2013

References

  • Liu Z, Zhang X, Wu H, et al. Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. Drug Dev Ind Pharm 2011;37:475–81
  • Mohammed MM, Hoda AE, Magda WS. Mucoadhesive liposomes as ocular delivery system: physical, microbiological, and in vivo assessment. Drug Dev Ind Pharm 2010;36:108–18
  • Abdelkader H, Ismail S, Kamal A, Alany RG. Preparation of niosomes as an ocular delivery system for naltrexone hydrochloride: physicochemical characterization. Pharmazie 2010;65:811–17
  • Singh KH, Shinde UA. Chitosan nanoparticles for controlled delivery of brimonidine tartrate to the ocular membrane. Pharmazie 2011;66:594–99
  • Jeong HK, Sun WJ, Sang DH, et al. Development of a novel ophthalmic ciclosporin A-loaded nanosuspension using top-down media milling methods. Pharmazie 2011;66:491–5
  • Nanjawade BK, Manvi FV, Manjappa AS. In situ-forming hydrogels for sustained ophthalmic drug delivery. J Control Release 2007;122:119–34
  • Araújo J, Gonzalez E, Egea MA, et al. Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomedicine 2009;5:394–401
  • Bozdag S, Weyenberg W, Adriaens E, et al. In vitro evaluation of gentamicin- and vancomycin-containing minitablets as a replacement for fortified eye drops. Drug Dev Ind Pharm 2010;36:1259–70
  • Agrawal AK, Gupta PN, Khanna A, et al. Development and characterization of in situ gel system for nasal insulin delivery. Pharmazie 2010;65:188–93
  • Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 2005;57:1595–639
  • Srividya B, Cardoza RM, Amin PD. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Control Release 2001;73:205–11
  • Wu C, Qi H, Chen W, et al. Preparation and evaluation of a Carbopol/HPMC-based in situ gelling ophthalmic system for puerarin. Yakgaku Zasshi 2007;127:183–91
  • Fu Y, Du L, Wang Q, et al. In vitro sustained release of recombinant human bone morphogenetic protein-2 microspheres embedded in thermosensitive hydrogels. Pharmazie 2012;67:299–303
  • Guo X, Cui F, Xing Y, et al. Investigation of a new injectable thermosensitive hydrogel loading solid lipid nanoparticles. Pharmazie 2011;66:948–52
  • Bromberg L, Ron ES. Protein and peptide release from temperature-responsive gels and thermogelling polymer matrices. Adv Drug Deliv Rev 1998;31:197--221
  • Wei G, Xu H, Ding PT, et al. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J Control Release 2002;83:65–74
  • Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res 2006;23:2709–28
  • Dumortier G, Kateb NE, Sahli M, et al. Development of a thermogelling ophthalmic formulation of cysteine. Drug Dev Ind Pharm 2006;32:63–72
  • Escobar-Chávez JJ, López-Cervantes M, Naik A, et al. Applications of thermoreversible Pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci 2006;9:339–58
  • Ma W, Xu H, Wang C, et al. Pluronic poloxamer-g-poly (acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system. Int J Pharm 2008;350:247–56
  • Ma W, Xu H, Nie S, Pan W. Temperature-responsive, pluronic-g-poly(acrylic acid) copolymers in situ gels for ophthalmic drug delivery: rheology, in vitro drug release, and in vivo resident property. Drug Dev Ind Pharm 2008;34:258–66
  • Desai SD, Blanchard J. Evaluation of Pluronic F127 sustained-release ocular delivery systems for pilocarpine using the albino rabbit eye model. J Pharm Sci 1998;87:1190--5
  • Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 2008;68:34–45
  • Tian JL, Ke X, Chen Z, et al. Melittin liposomes surface modified with poloxamer 188: in vitro characterization an in vivo evaluation. Pharmazie 2011;66:362–7
  • Edsman K, Carlfors J, Petersson R. Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. Eur J Pharm Sci 1998;6:105-22
  • Yoo MK, Cho KY, Song HH, et al. Release of ciprofloxacin from chondroitin 6-sulfate-graft-poloxamer hydrogel in vitro for ophthalmic drug delivery. Drug Dev Ind Pharm 2005;31:455–63
  • Shukla PK, Kumar M, Keshava GB. Mycotic keratitis: an overview of diagnosis and therapy. Mycoses 2008;51:183–99
  • Panda A, Satpathy G, Nayak N, et al. Demographic pattern, predisposing factors and management of ulcerative keratitis: evaluation of one thousand unilateral cases at a tertiary care centre. Clin Exp Ophthalmol 2007;35:44–50
  • Krishnan S, Manavathu EK, Chandrasekar PH. Aspergillus flavus: an emerging non-fumigatus aspergillus species of significance. Mycoses 2009;52:206–22
  • Patel A, Hammersmith K. Contact lens-related microbial keratitis: recent outbreaks. Curr Opin Ophthalmol 2008;19:302–6
  • Satishkumar PJ, Sejal PS, Namita SR, et al. In situ ophthalmic gel of ciprofloxacin hydrochloride for once a day sustained delivery. Drug Dev Ind Pharm 2008;34:445–52
  • Mark AB. Ocular drug metabolism of the bioactivating antioxidant n-acetylcarnosine for vision in ophthalmic prodrug and codrug design and delivery. Drug Dev Ind Pharm 2008;34:1071–89
  • Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery. Drug Dev Ind Pharm 2010;36:1330–9
  • Jeong B, Kim SW, Bae YH. Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev 2002;54:37–51
  • Qi H, Chen W, Huang C, et al. Development of a Poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int J Pharm 2007;337:178–87
  • Bozdağ S, Gümüş K, Gümüş O, Ünlü N. Formulation and in vitro evaluation of cysteamine hydrochloride viscous solutions for the treatment of corneal cystinosis. Eur J Pharm Biopharm 2008;70:260–9
  • Asasutjarit R, Thanasanchokpibull S, Fuongfuchat A, Veeranondha S. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels. Int J Pharm 2011;411:128–35
  • Liu Z, Yang X, Li X, et al. Study on the ocular pharmacokinetics of ion-activated in situ gelling ophthalmic delivery system for gatifloxacin by microdialysis. Drug Dev Ind Pharm 2007;33:1327–31
  • Gratieri T, Gelfuso G, Freitas O, et al. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur J Pharm Biopharm 2011;79:320–7
  • Mukesh KP, Gulshan C, Kamla P. Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole: ex-vivo transcorneal permeation, corneal toxicity and irritation testing. Drug Dev Ind Pharm 2013;39:780–90
  • Piau JM. Carbopol gels: elastoviscoplastic and slippery glasses made of individual swollen sponges meso- and macroscopic properties, constitutive equations and scaling laws. J Nonnewton Fluid Mech 2007;144:1–29
  • Fabian H, Flavia L, Duangkamon S, et al. In situ gelling properties of anionic thiomers. Drug Dev Ind Pharm 2012;38:1479–85
  • Qian Y, Wang F, Li R, et al. Preparation and evaluation of in situ gelling ophthalmic drug delivery system for methazolamide. Drug Dev Ind Pharm 2010;36:1340–7
  • Vadnere M, Amidon G, Lindenbaum S, Haslam JL. Thermodynamics tudies on the gel–sol transition of some pluronic polyols. Int J Pharm 1984;22:207–18
  • Ryu J, Chung S, Lee M, et al. Increased bioavailability of propranolol in rats by retaining thermal gelling liquid suppositories in the rectum. J Control Release 1999;59:163–72
  • Jonathan C, Cheng Y, Ben S, et al. Development of in vitro models to demonstrate the ability of PecSys, an in situ nasal gelling technology, to reduce nasal run-off and drip. Drug Dev Ind Pharm 2013;39:816–24
  • Sinko PJ. Martin’s physical pharmacy and pharmaceutical sciences: physical chemical and biopharmaceutical principles in the pharmaceutical sciences. Philadephia (PA): Lippincott Williams&Wilkins; 2006
  • Yang Y, Xu L, Gao Y, et al. Improved initial burst of estradiol organogel as long-term in situ drug delivery implant: formulation, in vitro and in vivo characterization. Drug Dev Ind Pharm 2012;38:550–6
  • Maha AH. A long acting ophthalmic gel formulations of atenolol. Drug Dev Ind Pharm 2007;33:1192–8
  • Liu Z, Pan W, Nie S, et al. Preparation and evaluation of sustained ophthalmic gel of enoxacin. Drug Dev Ind Pharm 2005;31:969–75

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.