274
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Feasibility of poly (ε-caprolactone-co-DL-lactide) as a biodegradable material for in situ forming implants: evaluation of drug release and in vivo degradation

, , , , , , , , & show all
Pages 342-352 | Received 02 Mar 2013, Accepted 06 Nov 2013, Published online: 09 Dec 2013

References

  • Hatefi A, Amsden B. Biodegradable injectable in situ forming drug delivery systems. J Control Release 2002;80:9–28
  • Packhaeuser CB, Schnieders J, Oster CG, et al. In situ forming parenteral drug delivery systems: an overview. Eur J Pharm Biopharm 2004;58:445–55
  • Qian Y, Wang F, Li R, et al. Preparation and evaluation of in situ gelling ophthalmic drug delivery system for methazolamide. Drug Dev Ind Pharm 2010;36:1340–7
  • Einmahl S, Capancioni S, Schwach-Abdellaoui K, et al. Therapeutic applications of viscous and injectable poly(ortho esters). Adv Drug Deliv Rev 2001;53:45–73
  • Balakrishnan B, Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 2005;26:3941–51
  • Cohn D, Sosnik A, Garty S. Smart hydrogels for in situ generated implants. Biomacromolecules 2005;6:1168–75
  • Brodbeck KJ, Pushpala S, McHugh AJ. Sustained release of human growth hormone from PLGA solution depots. Pharm Res 1999;16:1825–9
  • Wang L, Venkatraman S, Kleiner L. Drug release from injectable depots: two different in vitro mechanisms. J Control Release 2004;99:207–16
  • Jalil R-U. Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) polymers in sustained drug delivery. Drug Dev Ind Pharm 1990;16:2353–67
  • DesNoyer JR, McHugh AJ. Role of crystallization in the phase inversion dynamics and protein release kinetics of injectable drug delivery systems. J Control Release 2001;70:285–94
  • Brodbeck KJ, DesNoyer JR, McHugh AJ. Phase inversion dynamics of PLGA solutions related to drug delivery. Part II. The role of solution thermodynamics and bath-side mass transfer. J Control Release 1999;62:333–44
  • Graham PD, Brodbeck KJ, McHugh AJ. Phase inversion dynamics of PLGA solutions related to drug delivery. J Control Release 1999;58:233–45
  • Liu Q, Zhang H, Zhou G, et al. In vitro and in vivo study of thymosin alpha1 biodegradable in situ forming poly(lactide-co-glycolide) implants. Int J Pharm 2010;397:122–9
  • Wang SH, Liang ZH, Zeng S. Monitoring release of ketoprofen enantiomers from biodegradable poly(d,l-lactide-co-glycolide) injectable implants. Int J Pharm 2007;337:102–8
  • Liu Y, Kemmer A, Keim K, et al. Poly(ethylene carbonate) as a surface-eroding biomaterial for in situ forming parenteral drug delivery systems: a feasibility study. Eur J Pharm Biopharm 2010;76:222–9
  • Kang F, Singh J. In vitro release of insulin and biocompatibility of in situ forming gel systems. Int J Pharm 2005;304:83–90
  • Ye WP, Chien YW. Dual-controlled drug delivery across biodegradable copolymer. I. Delivery kinetics of levonorgestrel and estradiol through (caprolactone/lactide) block copolymer. Pharm Dev Technol 1996;1:1–9
  • Lemmouchi Y, Schacht E, Lootens C. In vitro release of trypanocidal drugs from biodegradable implants based on poly(epsilon-caprolactone) and poly(d,l-lactide). J Control Release 1998;55:79–85
  • Barakat NS, Shazly GA, Almedany AH. Influence of polymer blends on the characterization of gliclazide -- encapsulated into poly (Æ-caprolactone) microparticles. Drug Dev Ind Pharm 2013;39:352–62
  • Vion JM, Jerome R, Teyssie P, et al. Synthesis, characterization and miscibility of caprolactone random copolymers. Macromolecules 1986;19:1828–38
  • Perego G, Vercellio T, Balbontin G. Copolymers of l- and d,l-lactide with caprolactone: synthesis and characterization. Die Makromolekulare Chemie 1993;194:2463–9
  • Malin M, Hiljanen-Vainio M, Karjalainen T, et al. Biodegradable lactone copolymers. II. Hydrolytic study of ε-caprolactone and lactide copolymers. J Appl Polym Sci 1996;59:1289–98
  • den Dunnen WF, Robinson PH, van Wessel R, et al. Long-term evaluation of degradation and foreign-body reaction of subcutaneously implanted poly(DL-lactide-epsilon-caprolactone). J Biomed Mater Res 1997;36:337–46
  • Ahola M, Rich J, Kortesuo P, et al. In vitro evaluation of biodegradable epsilon-caprolactone-co-D,L-lactide/silica xerogel composites containing toremifene citrate. Int J Pharm 1999;181:181–91
  • Rich J, Kortesuo P, Ahola M, et al. Effect of the molecular weight of poly(epsilon-caprolactone-co-DL-lactide) on toremifene citrate release from copolymer/silica xerogel composites. Int J Pharm 2001;212:121–30
  • Wang C, Swerdloff RS. Hormonal approaches to male contraception. Curr Opin Urol 2010;20:520–4
  • Liu PY, Swerdloff RS, Wang C. Recent methodological advances in male hormonal contraception. Contraception 2010;82:471–5
  • Meriggiola MC, Costantino A, Saad F, et al. Norethisterone enanthate plus testosterone undecanoate for male contraception: effects of various injection intervals on spermatogenesis, reproductive hormones, testis, and prostate. J Clin Endocrinol Metab 2005;90:2005–14
  • Gu Y, Liang X, Wu W, et al. Multicenter contraceptive efficacy trial of injectable testosterone undecanoate in Chinese men. J Clin Endocrinol Metab 2009;94:1910–15
  • Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997;28:5–24
  • Pitt CG, Jeffcoat AR, Zweidinger RA, et al. Sustained drug delivery systems. 1. The permeability of poly(epsilon-caprolactone), poly(DL-lactic acid), and their copolymers. J Biomed Mater Res 1979;13:497–507
  • Ravivarapu HB, Moyer KL, Dunn RL. Parameters affecting the efficacy of a sustained release polymeric implant of leuprolide. Int J Pharm 2000;194:181–91
  • Bertram U, Bodmeier R. Effect of polymer molecular weight and of polymer blends on the properties of rapidly gelling nasal inserts. Drug Dev Ind Pharm 2012;38:659–69
  • Camargo J, Sapin A, Nouvel C, et al. Injectable PLA-based in situ forming implants for controlled release of Ivermectin a BCS Class II drug: solvent selection based on physico-chemical characterization. Drug Dev Ind Pharm 2013;39:146–155
  • Yang Y, Xu L, Gao Y, et al. Improved initial burst of estradiol organogel as long-term in situ drug delivery implant: formulation, in vitro and in vivo characterization. Drug Dev Ind Pharm 2012;38:550–6
  • Patel RB, Solorio L, Wu H, et al. Effect of injection site on in situ implant formation and drug release in vivo. J Control Release 2010;147:350–8
  • Williams D. Enzymic hydrolysis of polylactic acid. Eng Med 1981;10:5–7
  • Gan Z, Yu D, Zhong Z, et al. Enzymatic degradation of poly (ε-caprolactone)/poly (DL-lactide) blends in phosphate buffer solution. Polymer 1999;40:2859–62
  • Hakkarainen M, Karlsson S, Albertsson A-C. Rapid (bio) degradation of polylactide by mixed culture of compost microorganisms – low molecular weight products and matrix changes. Polymer 2000;41:2331–8
  • Siparsky GL, Voorhees KJ, Miao F. Hydrolysis of polylactic acid (PLA) and polycaprolactone (PCL) in aqueous acetonitrile solutions: autocatalysis. J Environ Polym Degr 1998;6:31–41
  • Cheung H-Y, Lau K-T, Lu T-P, et al. A critical review on polymer-based bio-engineered materials for scaffold development. Compos Part B: Eng 2007;38:291–300
  • Gopferich A. Mechanisms of polymer degradation and erosion. Biomaterials 1996;17:103–14
  • Deschamps AA, van Apeldoorn AA, Hayen H, et al. In vivo and in vitro degradation of poly(ether ester) block copolymers based on poly(ethylene glycol) and poly(butylene terephthalate). Biomaterials 2004;25:247–58
  • Zhang C, Zhang X, Yang D, et al. Biodegradation of in situ-forming gel of poly (DLLA-co-CL) in vivo. J Appl Polym Sci 2013;130:3800–08
  • Royals MA, Fujita SM, Yewey GL, et al. Biocompatibility of a biodegradable in situ forming implant system in rhesus monkeys. J Biomed Mater Res 1999;45:231–9
  • Hutmacher D, Hurzeler MB, Schliephake H. A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int J Oral Maxillofac Implants 1996;11:667–78
  • Vieira AC, Vieira JC, Ferra JM, et al. Mechanical study of PLA-PCL fibers during in vitro degradation. J Mech Behav Biomed Mater 2011;4:451–60

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.